Effects of Electron Temperature Anisotropy on Proton-beam Instability in the Solar Wind

Solar wind observations often show that the drift velocity of a proton beam relative to a background proton decreases with the heliocentric distance. Proton-beam instability has been suggested to play an important role in the deceleration of the proton-beam velocity; the effects of electron temperature anisotropy on the proton-beam instability have not been examined. Based on a general kinetic dispersion relation solver for magnetized plasma (PDRK), we investigate the effects of electron temperature anisotropy on the oblique Alfvén/ion-cyclotron (A/IC) and parallel magnetosonic/whistler (M/W) instabilities driven by proton beams in the solar wind. The results show that the growth rates, real frequencies, and threshold conditions for both instabilities are sensitive to the electron temperature anisotropy Te⊥/Te∣∣ and the parallel electron beta βe∣∣. In the low-beta regime with , where is a critical plasma beta for which the threshold velocities of both instabilities are equal, the growth rate of the oblique A/IC instability is weakly dependent on the electron temperature anisotropy. In the high-beta regime with , the growth rate of the parallel M/W instability increases with decreasing Te⊥/Te∣∣. Moreover, the threshold velocities of both instabilities are shifted to lower values as Te⊥/Te∣∣ decreases, especially for the parallel M/W instability in the regime with βe∣∣ ≥ 1. The theoretical results for the threshold velocity together with the observed parallel electron beta and/or electron temperature anisotropy are used to explain the observed proton-beam drift velocity in the solar wind.

[1]  K. Klein,et al.  Solar Wind Temperature Isotropy. , 2019, Physical review letters.

[2]  F. Mozer,et al.  Whistler Wave Generation by Halo Electrons in the Solar Wind , 2019, The Astrophysical Journal.

[3]  L. Chen,et al.  Effect of Alpha Beams on Low-frequency Electromagnetic Waves Driven by Proton Beams , 2018, The Astrophysical Journal.

[4]  J. Kasper,et al.  A Comparison of Alpha Particle and Proton Beam Differential Flows in Collisionally Young Solar Wind , 2018, The Astrophysical Journal.

[5]  S. M. Shaaban,et al.  Beaming electromagnetic (or heat-flux) instabilities from the interplay with the electron temperature anisotropies , 2018, Physics of Plasmas.

[6]  S. Bale,et al.  The Statistical Properties of Solar Wind Temperature Parameters Near 1 au , 2018, The Astrophysical Journal Supplement Series.

[7]  A. Schekochihin,et al.  MULTI-SPECIES MEASUREMENTS OF THE FIREHOSE AND MIRROR INSTABILITY THRESHOLDS IN THE SOLAR WIND , 2016, 1606.02624.

[8]  S. M. Shaaban,et al.  Effects of suprathermal electrons on the proton temperature anisotropy in space plasmas: Electromagnetic ion-cyclotron instability , 2016, 1602.04051.

[9]  J. Kasper,et al.  Ion‐driven instabilities in the solar wind: Wind observations of 19 March 2005 , 2015, Journal of geophysical research. Space physics.

[10]  S. M. Shaaban,et al.  EFFECTS OF ELECTRONS ON THE ELECTROMAGNETIC ION CYCLOTRON INSTABILITY: SOLAR WIND IMPLICATIONS , 2015 .

[11]  J. Hollweg,et al.  DECELERATION OF ALPHA PARTICLES IN THE SOLAR WIND BY INSTABILITIES AND THE ROTATIONAL FORCE: IMPLICATIONS FOR HEATING, AZIMUTHAL FLOW, AND THE PARKER SPIRAL MAGNETIC FIELD , 2014, 1411.4570.

[12]  Yong Xiao,et al.  PDRK: A General Kinetic Dispersion Relation Solver for Magnetized Plasma , 2014, 1410.2678.

[13]  P. Hellinger,et al.  SOLAR WIND PROTONS AT 1 AU: TRENDS AND BOUNDS, CONSTRAINTS AND CORRELATIONS , 2014, 1402.4611.

[14]  M. J. Michno,et al.  EFFECTS OF ELECTRONS ON THE SOLAR WIND PROTON TEMPERATURE ANISOTROPY , 2014 .

[15]  B. Chandran,et al.  A PARALLEL-PROPAGATING ALFVÉNIC ION-BEAM INSTABILITY IN THE HIGH-BETA SOLAR WIND , 2013, 1306.2531.

[16]  E. Marsch Helios: Evolution of Distribution Functions 0.3–1 AU , 2012 .

[17]  K. Meziane,et al.  On the generation of proton beams in fast solar wind in the presence of obliquely propagating Alfvén waves , 2010 .

[18]  E. Quataert,et al.  Magnetic fluctuation power near proton temperature anisotropy instability thresholds in the solar wind. , 2009, Physical review letters.

[19]  Q. Lu,et al.  Two-dimensional hybrid simulations of the oblique electromagnetic alpha/proton instability in the solar wind , 2009 .

[20]  E. Marsch,et al.  Proton core heating and beam formation via parametrically unstable Alfvén-cyclotron waves. , 2008, Physical review letters.

[21]  M. Maksimović,et al.  Electron temperature anisotropy constraints in the solar wind , 2008 .

[22]  Q. Lu,et al.  Electromagnetic waves downstream of quasi-perpendicular shocks , 2006 .

[23]  A. Lazarus,et al.  Solar wind proton temperature anisotropy: Linear theory and WIND/SWE observations , 2006 .

[24]  Youhua Tang,et al.  Long-range transport of sulfur dioxide in the central Pacific , 2004 .

[25]  A. Szabo,et al.  Solar Wind Temperature Anisotropies , 2003 .

[26]  E. Marsch,et al.  Formation of the proton beam distribution in high‐speed solar wind , 2002 .

[27]  Daan Hubert,et al.  Electron Properties and Coulomb Collisions in the Solar Wind at 1 AU: Wind Observations , 2001 .

[28]  R. Skoug,et al.  Solar wind electron suprathermal strength and temperature gradients: Ulysses observations , 2000 .

[29]  R. Skoug,et al.  Solar wind electrons: Parametric constraints , 1999 .

[30]  S. Gary,et al.  Electromagnetic proton/proton instabilities in the solar wind: Simulations , 1999 .

[31]  William Daughton,et al.  Electromagnetic proton/proton instabilities in the solar wind , 1998 .

[32]  David J. McComas,et al.  Evidence for ion jets in the high‐speed solar wind , 1993 .

[33]  J. Phillips,et al.  Radial evolution of solar wind thermal electron distributions due to expansion and collisions , 1990 .

[34]  J. Phillips,et al.  Anisotropic thermal electron distributions in the solar wind , 1989 .

[35]  D. Baker,et al.  Bidirectional solar wind electron heat flux events , 1987 .

[36]  S. Livi,et al.  Observational evidence for marginal stability of solar wind ion beams , 1987 .

[37]  S. Livi,et al.  Generation of solar wind proton tails and double beams by Coulomb collisions , 1987 .

[38]  H. Rosenbauer,et al.  Unusual electron distribution functions in the solar wind derived from the Helios Plasma Experiment: Double‐Strahl distributions and distributions with an extremely anisotropic core , 1987 .

[39]  H. Rosenbauer,et al.  Characteristics of electron velocity distribution functions in the solar wind derived from the helios plasma experiment , 1987 .

[40]  W. Feldman,et al.  Electromagnetic instabilities driven by unequal proton beams in the solar wind , 1976 .

[41]  W. Feldman,et al.  Solar wind electrons , 1975 .

[42]  W. Feldman,et al.  Interpenetrating solar wind streams. , 1974 .

[43]  A. Hundhausen,et al.  SOLAR WIND ELECTRONS: VELA 4 MEASUREMENTS. , 1968 .

[44]  F. Low,et al.  The Boltzmann equation an d the one-fluid hydromagnetic equations in the absence of particle collisions , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[45]  S. Gary,et al.  Observed constraint on proton‐proton relative velocities in the solar wind , 2000 .

[46]  H. Rosenbauer,et al.  Solar wind protons: Three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU , 1982 .