UTILITY SENTIENT FREQUENT ITEM SET MINING AND ASSOCIATION RULE MINING: A LITERATURE SURVEY AND COMPARATIVE STUDY

It is a well accepted verity that the process of data mining produces numerous patterns from the given data. The most significant tasks in data mining are the process of discovering frequent itemsets and association rules. Numerous efficient algorithms are available in the literature for mining frequent itemsets and association rules. Incorporating utility considerations in data mining tasks is gaining popularity in recent years. Certain association rules enhance the business value and the data mining community has acknowledged the mining of these rules of interest since a long time. Several business applications have been found to benefit from the discovery of frequent itemsets and association rules from transaction databases. A comprehensive survey and study of various methods in existence for frequent itemset mining, association rule mining with utility considerations have been presented in this paper.

[1]  Mohammed J. Zaki Scalable Algorithms for Association Mining , 2000, IEEE Trans. Knowl. Data Eng..

[2]  Raj P. Gopalan,et al.  CTU-Mine: An Efficient High Utility Itemset Mining Algorithm Using the Pattern Growth Approach , 2007, 7th IEEE International Conference on Computer and Information Technology (CIT 2007).

[3]  Philip S. Yu,et al.  Efficient mining of weighted association rules (WAR) , 2000, KDD '00.

[4]  Shamkant B. Navathe,et al.  An Efficient Algorithm for Mining Association Rules in Large Databases , 1995, VLDB.

[5]  Chuan Wang,et al.  PRICES: An Efficient Algorithm for Mining Association Rules , 2004, IDEAL.

[6]  Dimitrios Gunopulos,et al.  Constraint-Based Rule Mining in Large, Dense Databases , 2004, Data Mining and Knowledge Discovery.

[7]  Jian Pei,et al.  Mining frequent patterns without candidate generation , 2000, SIGMOD '00.

[8]  Gerd Stumme,et al.  Mining frequent patterns with counting inference , 2000, SKDD.

[9]  Mohammed J. Zaki,et al.  CHARM: An Efficient Algorithm for Closed Association Rule Mining , 2007 .

[10]  Jiawei Han,et al.  Profit Mining: From Patterns to Actions , 2002, EDBT.

[11]  Usama M. Fayyad,et al.  Knowledge Discovery in Databases: An Overview , 1997, ILP.

[12]  Sanguthevar Rajasekaran,et al.  Ieee Transactions on Knowledge and Data Engineering 1 a Transaction Mapping Algorithm for Frequent Itemsets Mining , 2022 .

[13]  Keqing Li,et al.  Mining High Utility Itemsets in Large High Dimensional Data , 2008, First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008).

[14]  Arun N. Swami,et al.  Set-oriented mining for association rules in relational databases , 1995, Proceedings of the Eleventh International Conference on Data Engineering.

[15]  Christian Borgelt,et al.  An implementation of the FP-growth algorithm , 2005 .

[16]  Girish Keshav Palshikar,et al.  Association Rules Mining Using Heavy Itemsets , 2005, COMAD.

[17]  Mohammed J. Zaki,et al.  GenMax: An Efficient Algorithm for Mining Maximal Frequent Itemsets , 2005, Data Mining and Knowledge Discovery.

[18]  Philip S. Yu,et al.  Data Mining: An Overview from a Database Perspective , 1996, IEEE Trans. Knowl. Data Eng..

[19]  Jian Pei,et al.  H-Mine: Fast and space-preserving frequent pattern mining in large databases , 2007 .

[20]  Heikki Mannila,et al.  Fast Discovery of Association Rules , 1996, Advances in Knowledge Discovery and Data Mining.

[21]  Roberto J. Bayardo,et al.  Mining the most interesting rules , 1999, KDD '99.

[22]  M. Sulaiman Khan,et al.  A Weighted Utility Framework for Mining Association Rules , 2008, 2008 Second UKSIM European Symposium on Computer Modeling and Simulation.

[23]  Suh-Yin Lee,et al.  An Efficient Algorithm for Mining Frequent Itemests over the Entire History of Data Streams , 2004 .

[24]  Gösta Grahne,et al.  Efficiently Using Prefix-trees in Mining Frequent Itemsets , 2003, FIMI.

[25]  Ferenc Bodon,et al.  A fast APRIORI implementation , 2003, FIMI.

[26]  Dimitris Kanellopoulos,et al.  Association Rules Mining: A Recent Overview , 2006 .

[27]  Christos Tjortjis,et al.  Experiences of Using a Quantitative Approach for Mining Association Rules , 2003, IDEAL.

[28]  R. Agarwal Fast Algorithms for Mining Association Rules , 1994, VLDB 1994.

[29]  Nicolas Pasquier,et al.  Discovering Frequent Closed Itemsets for Association Rules , 1999, ICDT.

[30]  Raj P. Gopalan,et al.  A Bottom-Up Projection Based Algorithm for Mining High Utility Itemsets , 2007, AIDM.

[31]  Howard J. Hamilton,et al.  Mining itemset utilities from transaction databases , 2006, Data Knowl. Eng..

[32]  H. Zimmermann,et al.  Fuzzy Set Theory and Its Applications , 1993 .

[33]  G. Holmes,et al.  Developing innovative applications in agriculture using data mining , 1999 .

[34]  Vincent S. Tseng,et al.  An efficient algorithm for mining temporal high utility itemsets from data streams , 2008, J. Syst. Softw..

[35]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[36]  Chinchen Chang,et al.  EFFICIENT ALGORITHMS FOR MINING SHARE-FREQUENT ITEMSETS , 2005 .

[37]  Chia-Chu Chiang,et al.  A Parallel Apriori Algorithm for Frequent Itemsets Mining , 2006, Fourth International Conference on Software Engineering Research, Management and Applications (SERA'06).

[38]  Chin-Chen Chang,et al.  Direct Candidates Generation: A Novel Algorithm for Discovering Complete Share-Frequent Itemsets , 2005, FSKD.

[39]  M. Sulaiman Khan,et al.  Fuzzy Weighted Association Rule Mining with Weighted Support and Confidence Framework , 2009, PAKDD Workshops.

[40]  Nada Lavrač,et al.  A Fast Algorithm for Mining Utility-Frequent Itemsets , 2007 .

[41]  Mohammed J. Zaki,et al.  Fast vertical mining using diffsets , 2003, KDD '03.

[42]  Christian Hidber,et al.  Association Rule Mining , 2017 .

[43]  Jian Pei,et al.  CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets , 2000, ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery.

[44]  沈錳坤 An Efficient Algorithm for Mining Frequent Itemsets over the Entire History of Data Streams , 2004 .

[45]  Marek Wojciechowski,et al.  Concurrent Processing of Frequent Itemset Queries Using FP-Growth Algorithm , 2005 .

[46]  Ramakrishnan Srikant,et al.  Mining generalized association rules , 1995, Future Gener. Comput. Syst..

[47]  A. Choudhary,et al.  A fast high utility itemsets mining algorithm , 2005, UBDM '05.

[48]  Jieh-Shan Yeh,et al.  Efficient algorithms for incremental utility mining , 2008, ICUIMC '08.

[49]  Gregory Piatetsky-Shapiro,et al.  Knowledge Discovery in Databases: An Overview , 1992, AI Mag..

[50]  Jian Pei,et al.  Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach , 2006, Sixth IEEE International Conference on Data Mining - Workshops (ICDMW'06).

[51]  Bianca Zadrozny,et al.  UBDM 2006: Utility-Based Data Mining 2006 workshop report , 2006, SKDD.

[52]  Philip S. Yu,et al.  An effective hash-based algorithm for mining association rules , 1995, SIGMOD '95.

[53]  Qiang Yang,et al.  Objective-oriented utility-based association mining , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[54]  Wynne Hsu,et al.  Finding Interesting Patterns Using User Expectations , 1999, IEEE Trans. Knowl. Data Eng..

[55]  Rajeev Motwani,et al.  Dynamic itemset counting and implication rules for market basket data , 1997, SIGMOD '97.

[56]  Chin-Chen Chang,et al.  A Fast Algorithm for Mining Share-Frequent Itemsets , 2005, APWeb.

[57]  Charu C. Aggarwal,et al.  A Tree Projection Algorithm for Generation of Frequent Item Sets , 2001, J. Parallel Distributed Comput..

[58]  Jing Wang,et al.  Pushing Frequency Constraint to Utility Mining Model , 2007, International Conference on Computational Science.

[59]  An effective Fuzzy Healthy Association Rule Mining Algorithm ( FHARM ) , 2007 .

[60]  Ramakrishnan Srikant,et al.  Mining quantitative association rules in large relational tables , 1996, SIGMOD '96.