Geometrical-optics solution to light scattering by droxtal ice crystals.

We investigate the phase matrices of droxtals at wavelengths of 0.66 and 11 microm by using an improved geometrical-optics method. An efficient method is developed to specify the incident rays and the corresponding impinging points on the particle surface necessary to initialize the ray-tracing computations. At the 0.66-microm wavelength, the optical properties of droxtals are different from those of hexagonal ice crystals. At the 11-microm wavelength, the phase functions for droxtals are essentially featureless because of strong absorption within the particles, except for ripple structures that are caused by the phase interference of the diffracted wave.

[1]  K. Liou,et al.  Solar Radiative Transfer in Cirrus Clouds. Part I: Single-Scattering and Optical Properties of Hexagonal Ice Crystals , 1989 .

[2]  Bryan A. Baum,et al.  Use of circular cylinders as surrogates for hexagonal pristine ice crystals in scattering calculations at infrared wavelengths. , 2003, Applied optics.

[3]  F.Michael Kahnert,et al.  Numerical methods in electromagnetic scattering theory , 2003 .

[4]  J. Edwards,et al.  Implementation of the T-matrix method on a massively parallel machine: a comparison of hexagonal ice cylinder single-scattering properties using the T-matrix and improved geometric optics methods , 2003 .

[5]  M. Mishchenko,et al.  Constraints on PSC particle microphysics derived from lidar observations , 2001 .

[6]  P. Wendling,et al.  Scattering of solar radiation by hexagonal ice crystals. , 1979, Applied optics.

[7]  Y. Takano,et al.  Scattering phase matrix for hexagonal ice crystals computed from ray optics. , 1985, Applied optics.

[8]  A. Macke,et al.  Scattering of light by polyhedral ice crystals. , 1993, Applied optics.

[9]  Andrew A. Lacis,et al.  Sensitivity of cirrus cloud albedo, bidirectional reflectance and optical thickness retrieval accuracy to ice particle shape , 1996 .

[10]  K. M. Miller,et al.  The 27-28 October 1986 FIRE IFO cirrus case study : cloud microstructure , 1990 .

[11]  S. Warren,et al.  Optical constants of ice from the ultraviolet to the microwave. , 1984, Applied optics.

[12]  Harumi Isaka,et al.  Scattering Phase Function of Bullet Rosette Ice Crystals , 1995 .

[13]  William L. Woodley,et al.  Deep convective clouds with sustained supercooled liquid water down to -37.5 °C , 2000, Nature.

[14]  T. Ohtake,et al.  Unusual Crystal in Ice Fog , 1970 .

[15]  M. Mishchenko,et al.  Light scattering by size-shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength. , 1993, Applied optics.

[16]  Brad Baker,et al.  An overview of microphysical properties of Arctic clouds observed in May and July 1998 during FIRE ACE , 2001 .

[17]  K. Liou Influence of Cirrus Clouds on Weather and Climate Processes: A Global Perspective , 1986 .

[18]  K. Liou,et al.  Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space , 1996 .

[19]  A. Macke,et al.  Single Scattering Properties of Atmospheric Ice Crystals , 1996 .

[20]  J. Reichardt,et al.  Effect of multiple scattering on depolarization measurements with spaceborne lidars. , 2003, Applied optics.

[21]  J. Iaquinta,et al.  Cirrus Crystal Terminal Velocities , 2000 .

[22]  K. Liou,et al.  Single-scattering properties of complex ice crystals in terrestrial atmosphere , 1998 .

[23]  Q. Fu,et al.  Finite-difference time-domain solution of light scattering by dielectric particles with large complex refractive indices. , 2000, Applied optics.

[24]  K. Muinonen,et al.  Scattering of light by crystals: a modified Kirchhoff approximation. , 1989, Applied optics.

[25]  Elmer Robinson,et al.  STUDIES OF ALASKAN ICE-FOG PARTICLES , 1954 .

[26]  A. Heymsfield Cirrus Uncinus Generating Cells and the Evolution of Cirriform Clouds. Part I: Aircraft Observations of the Growth of the Ice Phase , 1975 .

[27]  G. McFarquhar,et al.  Sensitivity of cirrus bidirectional reflectance to vertical inhomogeneity of ice crystal habits and size distributions for two Moderate‐Resolution Imaging Spectroradiometer (MODIS) bands , 2001 .

[28]  J. Reichardt,et al.  Retrieval of Polar Stratospheric Cloud Microphysical Properties from Lidar Measurements: Dependence on Particle Shape Assumptions , 2001 .

[29]  Bryan A. Baum,et al.  Single scattering properties of droxtals , 2003 .

[30]  Karsten Schmidt,et al.  Light scattering by hexagonal ice crystals , 1998 .

[31]  M. Mishchenko,et al.  Asymptotic solutions for optical properties of large particles with strong absorption. , 2013, Applied optics.

[32]  Piet Stammes,et al.  Scattering matrices of imperfect hexagonal ice crystals , 1998 .

[33]  G. McFarquhar,et al.  A New Parameterization of Single Scattering Solar Radiative Properties for Tropical Anvils Using Observed Ice Crystal Size and Shape Distributions , 2002 .

[34]  M. Mishchenko,et al.  How big should hexagonal ice crystals be to produce halos? , 1999, Applied optics.

[35]  J. Spinhirne,et al.  On the formation and persistence of subvisible cirrus clouds near the tropical tropopause , 1996 .

[36]  K. Liou,et al.  Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals. , 1996, Applied optics.

[37]  A. Heymsfield,et al.  Homogeneous Ice Nucleation and Supercooled Liquid Water in Orographic Wave Clouds , 1993 .

[38]  K. Liou,et al.  Polarized light scattering by hexagonal ice crystals: theory. , 1982, Applied optics.