Single-Cell Investigation of Endothelial Nitric Oxide Dynamics

[1]  S. Houser,et al.  The mitochondrial Na+/Ca2+ exchanger is essential for Ca2+ homeostasis and viability , 2017, Nature.

[2]  A. Galaz,et al.  Nanomolar nitric oxide concentrations quickly and reversibly modulate astrocytic energy metabolism , 2017, The Journal of Biological Chemistry.

[3]  J. Cheung,et al.  Mitochondrial Ca2+ Uniporter Is a Mitochondrial Luminal Redox Sensor that Augments MCU Channel Activity. , 2017, Molecular cell.

[4]  H. S. Hundal,et al.  The endocannabinoid system: ‘NO’ longer anonymous in the control of nitrergic signalling? , 2017, Journal of molecular cell biology.

[5]  C. Garland,et al.  EDH: endothelium‐dependent hyperpolarization and microvascular signalling , 2017, Acta physiologica.

[6]  C. Mammucari,et al.  Molecular structure and pathophysiological roles of the Mitochondrial Calcium Uniporter. , 2016, Biochimica et biophysica acta.

[7]  Laura Contreras,et al.  Calcium regulation of mitochondrial carriers. , 2016, Biochimica et biophysica acta.

[8]  E. Carafoli,et al.  Why Calcium? How Calcium Became the Best Communicator* , 2016, The Journal of Biological Chemistry.

[9]  A. Xu,et al.  Thirty Years of Saying NO: Sources, Fate, Actions, and Misfortunes of the Endothelium-Derived Vasodilator Mediator. , 2016, Circulation research.

[10]  S. Houser,et al.  MCUR1 Is a Scaffold Factor for the MCU Complex Function and Promotes Mitochondrial Bioenergetics. , 2016, Cell reports.

[11]  C. Romanin,et al.  Molecular mechanisms of STIM/Orai communication , 2016, American journal of physiology. Cell physiology.

[12]  A. Rosato,et al.  The mitochondrial calcium uniporter regulates breast cancer progression via HIF‐1α , 2016, EMBO molecular medicine.

[13]  S. Hallström,et al.  Development of novel FP-based probes for live-cell imaging of nitric oxide dynamics , 2016, Nature Communications.

[14]  J. Foskett,et al.  EMRE Is a Matrix Ca(2+) Sensor that Governs Gatekeeping of the Mitochondrial Ca(2+) Uniporter. , 2016, Cell reports.

[15]  A. Boveris,et al.  Nitric oxide interacts with mitochondrial complex III producing antimycin-like effects. , 2015, Free radical biology & medicine.

[16]  Benjamin Gottschalk,et al.  Rearrangement of MICU1 multimers for activation of MCU is solely controlled by cytosolic Ca2+ , 2015, Scientific Reports.

[17]  S. Segal,et al.  Membrane potential governs calcium influx into microvascular endothelium: integral role for muscarinic receptor activation , 2015, The Journal of physiology.

[18]  Riley J. Payne,et al.  MCUR1, CCDC90A, Is a Regulator of the Mitochondrial Calcium Uniporter. , 2015, Cell metabolism.

[19]  Yingzi Zhao,et al.  Vascular nitric oxide: Beyond eNOS. , 2015, Journal of pharmacological sciences.

[20]  R. Rizzuto,et al.  Structure and function of the mitochondrial calcium uniporter complex. , 2015, Biochimica et biophysica acta.

[21]  M. Duchen,et al.  Annals of the New York Academy of Sciences Calcium Signaling as a Mediator of Cell Energy Demand and a Trigger to Cell Death , 2022 .

[22]  W. Graier,et al.  UCP2 modulates single-channel properties of a MCU-dependent Ca2+ inward current in mitochondria , 2015, Pflügers Archiv - European Journal of Physiology.

[23]  S. Houser,et al.  The Mitochondrial Calcium Uniporter Matches Energetic Supply with Cardiac Workload during Stress and Modulates Permeability Transition. , 2015, Cell reports.

[24]  M. Ikura,et al.  Calmodulin and STIM proteins: Two major calcium sensors in the cytoplasm and endoplasmic reticulum. , 2015, Biochemical and biophysical research communications.

[25]  G. Lanfranchi,et al.  The mitochondrial calcium uniporter controls skeletal muscle trophism in vivo. , 2015, Cell reports.

[26]  E. Shoubridge,et al.  CCDC90A (MCUR1) is a cytochrome c oxidase assembly factor and not a regulator of the mitochondrial calcium uniporter. , 2015, Cell metabolism.

[27]  V. Mootha,et al.  The uniporter: from newly identified parts to function. , 2014, Biochemical and biophysical research communications.

[28]  Andras T. Deak,et al.  IP3-mediated STIM1 oligomerization requires intact mitochondrial Ca2+ uptake , 2014, Journal of Cell Science.

[29]  E. Heiss,et al.  Regulation of eNOS enzyme activity by posttranslational modification. , 2014, Current pharmaceutical design.

[30]  R. Rizzuto,et al.  MICU1 and MICU2 Finely Tune the Mitochondrial Ca2+ Uniporter by Exerting Opposite Effects on MCU Activity , 2014, Molecular cell.

[31]  C. Saldanha,et al.  Application of a Nitric Oxide Sensor in Biomedicine , 2014, Biosensors.

[32]  S. Hallström,et al.  ATP increases within the lumen of the endoplasmic reticulum upon intracellular Ca2+ release , 2014, Molecular biology of the cell.

[33]  S. Carr,et al.  EMRE Is an Essential Component of the Mitochondrial Calcium Uniporter Complex , 2013, Science.

[34]  Robert S. Balaban,et al.  The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter (MCU) , 2013, Nature Cell Biology.

[35]  M. Singer,et al.  The key role of nitric oxide in hypoxia: hypoxic vasodilation and energy supply-demand matching. , 2013, Antioxidants & redox signaling.

[36]  Q. Chai,et al.  Role of caveolae in shear stress-mediated endothelium-dependent dilation in coronary arteries. , 2013, Cardiovascular research.

[37]  G. Burnstock Purinergic signalling: from discovery to current developments , 2013, Experimental physiology.

[38]  S. Moro,et al.  The mitochondrial calcium uniporter is a multimer that can include a dominant‐negative pore‐forming subunit , 2013, The EMBO journal.

[39]  H. Hashimi,et al.  Trypanosome Letm1 Protein Is Essential for Mitochondrial Potassium Homeostasis* , 2013, The Journal of Biological Chemistry.

[40]  V. Mootha,et al.  MICU1 controls both the threshold and cooperative activation of the mitochondrial Ca²⁺ uniporter. , 2013, Cell metabolism.

[41]  V. Mootha,et al.  MICU2, a Paralog of MICU1, Resides within the Mitochondrial Uniporter Complex to Regulate Calcium Handling , 2013, PloS one.

[42]  J. Kolesar,et al.  MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism , 2012, Nature Cell Biology.

[43]  M. Birnbaum,et al.  MICU1 Is an Essential Gatekeeper for MCU-Mediated Mitochondrial Ca2+ Uptake that Regulates Cell Survival , 2012, Cell.

[44]  G. Burnstock,et al.  Purinergic Signaling in the Airways , 2012, Pharmacological Reviews.

[45]  Rosario Rizzuto,et al.  Mitochondria as sensors and regulators of calcium signalling , 2012, Nature Reviews Molecular Cell Biology.

[46]  Hon Cheung Lee,et al.  Cyclic ADP-ribose and Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) as Messengers for Calcium Mobilization* , 2012, The Journal of Biological Chemistry.

[47]  U. Förstermann,et al.  Nitric oxide synthases: regulation and function. , 2012, European heart journal.

[48]  Elena Forte,et al.  Cytochrome c oxidase and nitric oxide in action: molecular mechanisms and pathophysiological implications. , 2012, Biochimica et biophysica acta.

[49]  Y. Jan,et al.  Activity of the mitochondrial calcium uniporter varies greatly between tissues , 2012, Nature Communications.

[50]  Carlotta Giorgi,et al.  Calcium signaling around Mitochondria Associated Membranes (MAMs) , 2011, Cell Communication and Signaling.

[51]  Daniel Pardo,et al.  eNOS activation and NO function: structural motifs responsible for the posttranslational control of endothelial nitric oxide synthase activity. , 2011, The Journal of endocrinology.

[52]  I. Ambudkar,et al.  Faculty Opinions recommendation of A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. , 2011 .

[53]  V. Mootha,et al.  Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter , 2011, Nature.

[54]  Alexander M. Lewis,et al.  NAADP links histamine H1 receptors to secretion of von Willebrand factor in human endothelial cells. , 2011, Blood.

[55]  G. Hagan,et al.  Pulmonary hypertension, nitric oxide and nitric oxide-releasing compounds , 2011, Expert review of respiratory medicine.

[56]  J. Siamwala,et al.  eNOS phosphorylation in health and disease. , 2010, Biochimie.

[57]  V. Mootha,et al.  MICU1 encodes a mitochondrial EF hand protein required for Ca2+ uptake , 2010, Nature.

[58]  Y. Li,et al.  Shear stress, SIRT1, and vascular homeostasis , 2010, Proceedings of the National Academy of Sciences.

[59]  W. Graier,et al.  The contribution of UCP2 and UCP3 to mitochondrial Ca(2+) uptake is differentially determined by the source of supplied Ca(2+). , 2010, Cell calcium.

[60]  V. Shoshan-Barmatz,et al.  NCLX is an essential component of mitochondrial Na+/Ca2+ exchange , 2009, Proceedings of the National Academy of Sciences.

[61]  M. Murgia,et al.  Controlling metabolism and cell death: at the heart of mitochondrial calcium signalling. , 2009, Journal of molecular and cellular cardiology.

[62]  C. Ferran,et al.  Mechanism of Purinergic Activation of Endothelial Nitric Oxide Synthase in Endothelial Cells , 2009, Circulation.

[63]  M. Frieden,et al.  Mitochondria and Ca2+ signaling: old guests, new functions , 2007, Pflügers Archiv - European Journal of Physiology.

[64]  Chris E Cooper,et al.  Nitric oxide regulation of mitochondrial oxygen consumption II: Molecular mechanism and tissue physiology. , 2007, American journal of physiology. Cell physiology.

[65]  W. Graier,et al.  Uncoupling proteins 2 and 3 are fundamental for mitochondrial Ca2+ uniport , 2007, Nature Cell Biology.

[66]  C. Giulivi,et al.  Nitric oxide regulation of mitochondrial oxygen consumption I: cellular physiology. , 2006, American journal of physiology. Cell physiology.

[67]  C. Giulivi,et al.  Role of calcium signaling in the activation of mitochondrial nitric oxide synthase and citric acid cycle. , 2004, Biochimica et biophysica acta.

[68]  D. Wink,et al.  Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. , 2004, American journal of physiology. Regulatory, integrative and comparative physiology.

[69]  D. Sacks,et al.  Calmodulin phosphorylation and modulation of endothelial nitric oxide synthase catalysis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[70]  L. Blatter,et al.  Mitochondrial calcium uptake stimulates nitric oxide production in mitochondria of bovine vascular endothelial cells. , 2004, American journal of physiology. Cell physiology.

[71]  G. Burnstock Purinergic Signaling and Vascular Cell Proliferation and Death , 2002, Arteriosclerosis, thrombosis, and vascular biology.

[72]  S. Gross,et al.  Activation and inactivation of neuronal nitric oxide synthase: characterization of Ca(2+)-dependent [125I]Calmodulin binding. , 2002, European journal of pharmacology.

[73]  W. Sessa,et al.  Post-translational control of endothelial nitric oxide synthase: why isn't calcium/calmodulin enough? , 2001, The Journal of pharmacology and experimental therapeutics.

[74]  A. Pries,et al.  Expression of ryanodine receptor type 3 and TRP channels in endothelial cells: comparison of in situ and cultured human endothelial cells. , 2001, Cardiovascular research.

[75]  D. Power,et al.  Coordinated Control of Endothelial Nitric-oxide Synthase Phosphorylation by Protein Kinase C and the cAMP-dependent Protein Kinase* , 2001, The Journal of Biological Chemistry.

[76]  J. Huidobro-Toro,et al.  Molecular mechanism of cGMP‐mediated smooth muscle relaxation , 2000, Journal of cellular physiology.

[77]  Michael Chinkers,et al.  Cyclic Nucleotide-gated Channels Mediate Membrane Depolarization following Activation of Store-operated Calcium Entry in Endothelial Cells* , 2000, The Journal of Biological Chemistry.

[78]  D. Ricquier,et al.  The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. , 2000, The Biochemical journal.

[79]  W. Sessa,et al.  Regulation of endothelium-derived nitric oxide production by the protein kinase Akt , 1999, Nature.

[80]  M. Marletta,et al.  Guanylate cyclase and the .NO/cGMP signaling pathway. , 1999, Biochimica et biophysica acta.

[81]  K. Kröncke,et al.  Inducible nitric oxide synthase and its product nitric oxide, a small molecule with complex biological activities. , 1995, Biological chemistry Hoppe-Seyler.

[82]  P. Emson,et al.  Localization of brain nitric oxide synthase (NOS) to human chromosome 12. , 1992, Genomics.

[83]  R. Busse,et al.  Differential role of extra‐ and intracellular calcium in the release of EDRF and prostacyclin from cultured endothelial cells , 1988, British journal of pharmacology.

[84]  L. Ignarro,et al.  Endothelium‐Derived Relaxing Factor From Pulmonary Artery and Vein Possesses Pharmacologic and Chemical Properties Identical to Those of Nitric Oxide Radical , 1987, Circulation research.

[85]  S. Moncada,et al.  Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor , 1987, Nature.

[86]  M. Brand The stoichiometry of the exchange catalysed by the mitochondrial calcium/sodium antiporter. , 1985, The Biochemical journal.

[87]  B. Mayer,et al.  Intact mitochondrial Ca2+ uniport is essential for agonist‐induced activation of endothelial nitric oxide synthase (eNOS) , 2017, Free radical biology & medicine.

[88]  Lukas N Groschner,et al.  Metabolism-secretion coupling and mitochondrial calcium activities in clonal pancreatic β-cells. , 2014, Vitamins and hormones.

[89]  M. Brini,et al.  Intracellular calcium homeostasis and signaling. , 2013, Metal ions in life sciences.

[90]  S. Segal,et al.  Calcium and electrical signalling along endothelium of the resistance vasculature. , 2012, Basic & clinical pharmacology & toxicology.

[91]  P. Pinton,et al.  Mitochondria-associated membranes (MAMs) as hotspot Ca(2+) signaling units. , 2012, Advances in experimental medicine and biology.

[92]  Joe G. N. Garcia,et al.  CaM Kinase II-dependent pathophysiological signalling in endothelial cells. , 2008, Cardiovascular research.

[93]  G. Burnstock Dual control of vascular tone and remodelling by ATP released from nerves and endothelial cells , 2008 .

[94]  J. Poderoso,et al.  The biological significance of mtNOS modulation. , 2007, Frontiers in bioscience : a journal and virtual library.

[95]  Hiroshi Watanabe,et al.  Calcium signalling in the endothelium. , 2006, Handbook of experimental pharmacology.

[96]  L. Blatter,et al.  Modulation of mitochondrial Ca by nitric oxide in cultured bovine vascular endothelial cells , 2005 .

[97]  G. Burnstock,et al.  Cellular distribution and functions of P2 receptor subtypes in different systems. , 2004, International review of cytology.

[98]  P. Vanhoutte Endothelial dysfunction and vascular disease. , 1998, Verhandelingen - Koninklijke Academie voor Geneeskunde van Belgie.