RagD auto-activating mutations impair MiT/TFE activity in kidney tubulopathy and cardiomyopathy syndrome

[1]  J. Hurley,et al.  Structure of the lysosomal mTORC1–TFEB–Rag–Ragulator megacomplex , 2023, Nature.

[2]  A. Ballabio,et al.  Non-canonical mTORC1 signaling at the lysosome. , 2022, Trends in cell biology.

[3]  Z. Arany,et al.  Folliculin promotes substrate-selective mTORC1 activity by activating RagC to recruit TFE3 , 2022, PLoS biology.

[4]  P. Argani,et al.  GPNMB expression identifies TSC1/2/mTOR‐associated and MiT family translocation‐driven renal neoplasms , 2022, The Journal of pathology.

[5]  Xiaogang Li,et al.  The Role of Mitochondria in Acute Kidney Injury and Chronic Kidney Disease and Its Therapeutic Potential , 2021, International journal of molecular sciences.

[6]  A. Ballabio,et al.  GABARAP sequesters the FLCN-FNIP tumor suppressor complex to couple autophagy with lysosomal biogenesis , 2021, Science advances.

[7]  Jie Liu,et al.  TFEB insufficiency promotes cardiac hypertrophy by blocking autophagic degradation of GATA4 , 2021, The Journal of biological chemistry.

[8]  A. Ballabio,et al.  Autophagy in major human diseases , 2021, The EMBO journal.

[9]  Xueying Lin,et al.  TFEB Overexpression, Not mTOR Inhibition, Ameliorates RagCS75Y Cardiomyopathy , 2021, International journal of molecular sciences.

[10]  J. Jefferies,et al.  Clinical Insights Into Heritable Cardiomyopathies , 2021, Frontiers in Genetics.

[11]  C. Mummery,et al.  Generation, functional analysis and applications of isogenic three-dimensional self-aggregating cardiac microtissues from human pluripotent stem cells , 2021, Nature Protocols.

[12]  Y. E. Chen,et al.  Transcription factor EB regulates cardiovascular homeostasis. , 2021, EBioMedicine.

[13]  Mark W. Ball,et al.  Clinical and Molecular Characterization of Microphthalmia-Associated Transcription Factor (MITF)-Related Renal Cell Carcinoma. , 2020, Urology.

[14]  A. Ballabio,et al.  LC3 lipidation is essential for TFEB activation during the lysosomal damage response to kidney injury , 2020, Nature Cell Biology.

[15]  A. Ballabio,et al.  A substrate-specific mTORC1 pathway underlies Birt-Hogg-Dubé syndrome , 2020, Nature.

[16]  C. Mummery,et al.  Human-iPSC-Derived Cardiac Stromal Cells Enhance Maturation in 3D Cardiac Microtissues and Reveal Non-cardiomyocyte Contributions to Heart Disease , 2020, Cell stem cell.

[17]  Hua-feng Liu,et al.  Regulation of TFEB activity and its potential as a therapeutic target against kidney diseases , 2020, Cell Death Discovery.

[18]  E. Ashton,et al.  Inherited Renal Tubulopathies—Challenges and Controversies , 2020, Genes.

[19]  A. Ballabio,et al.  Lysosomes as dynamic regulators of cell and organismal homeostasis , 2019, Nature Reviews Molecular Cell Biology.

[20]  J. Hurley,et al.  Structural mechanism of a Rag GTPase activation checkpoint by the lysosomal folliculin complex , 2019, Science.

[21]  M. Bhasin,et al.  TFEB-driven lysosomal biogenesis is pivotal for PGC1α-dependent renal stress resistance , 2019, JCI insight.

[22]  A. Bruselles,et al.  VarGenius executes cohort-level DNA-seq variant calling and annotation and allows to manage the resulting data through a PostgreSQL database , 2018, BMC Bioinformatics.

[23]  I. Dikic,et al.  Mechanism and medical implications of mammalian autophagy , 2018, Nature reviews. Molecular cell biology.

[24]  D. Sabatini,et al.  Intersubunit Crosstalk in the Rag GTPase Heterodimer Enables mTORC1 to Respond Rapidly to Amino Acid Availability. , 2017, Molecular cell.

[25]  C. De Virgilio,et al.  The Architecture of the Rag GTPase Signaling Network , 2017, Biomolecules.

[26]  David M. Sabatini,et al.  mTOR Signaling in Growth, Metabolism, and Disease , 2017, Cell.

[27]  V. Korolchuk,et al.  Oxidative Stress by Monoamine Oxidase-A Impairs Transcription Factor EB Activation and Autophagosome Clearance, Leading to Cardiomyocyte Necrosis and Heart Failure. , 2016, Antioxidants and Redox Signaling.

[28]  M. Zimmermann,et al.  De novo RRAGC mutation activates mTORC1 signaling in syndromic fetal dilated cardiomyopathy , 2016, Human Genetics.

[29]  M. Pearle,et al.  Kidney stones , 2016, Nature Reviews Disease Primers.

[30]  R. Youle,et al.  MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5 , 2015, The Journal of cell biology.

[31]  A. Ballabio,et al.  Lysosomal calcium signaling regulates autophagy via calcineurin and TFEB , 2015, Nature Cell Biology.

[32]  Milena Bellin,et al.  Recessive cardiac phenotypes in induced pluripotent stem cell models of Jervell and Lange-Nielsen syndrome: Disease mechanisms and pharmacological rescue , 2014, Proceedings of the National Academy of Sciences.

[33]  J. Martina,et al.  The Nutrient-Responsive Transcription Factor TFE3 Promotes Autophagy, Lysosomal Biogenesis, and Clearance of Cellular Debris , 2014, Science Signaling.

[34]  D. Sabatini,et al.  The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. , 2013, Molecular cell.

[35]  J. Martina,et al.  Rag GTPases mediate amino acid–dependent recruitment of TFEB and MITF to lysosomes , 2013, The Journal of cell biology.

[36]  T. Walther,et al.  The Transcription Factor TFEB Links mTORC1 Signaling to Transcriptional Control of Lysosome Homeostasis , 2012, Science Signaling.

[37]  Yong Chen,et al.  MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB , 2012, Autophagy.

[38]  Andrea Ballabio,et al.  TFEB Links Autophagy to Lysosomal Biogenesis , 2011, Science.

[39]  D. Sabatini,et al.  Ragulator-Rag Complex Targets mTORC1 to the Lysosomal Surface and Is Necessary for Its Activation by Amino Acids , 2010, Cell.

[40]  Valerio Embrione,et al.  A Gene Network Regulating Lysosomal Biogenesis and Function , 2009, Science.

[41]  David M. Sabatini,et al.  The Rag GTPases Bind Raptor and Mediate Amino Acid Signaling to mTORC1 , 2008, Science.

[42]  Michael C. Ostrowski,et al.  Microphthalmia-associated transcription factor interactions with 14-3-3 modulate differentiation of committed myeloid precursors. , 2006, Molecular biology of the cell.

[43]  R. Abagyan,et al.  Large‐scale prediction of protein geometry and stability changes for arbitrary single point mutations , 2004, Proteins.

[44]  I. Vetter,et al.  The Guanine Nucleotide-Binding Switch in Three Dimensions , 2001, Science.

[45]  R. Abagyan,et al.  Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. , 1994, Journal of molecular biology.