High Order Schemes for Hyperbolic Problems Using Globally Continuous Approximation and Avoiding Mass Matrices

When integrating unsteady problems using globally continuous representation of the solution, as for continuous finite element methods, one faces the problem of inverting a mass matrix. In some cases, one has to recompute this mass matrix at each time steps. In some other methods that are not directly formulated by standard variational principles, it is not clear how to write an invertible mass matrix. Hence, in this paper, we show how to avoid this problem for hyperbolic systems, and we also detail the conditions under which this is possible. Analysis and simulation support our conclusions, namely that it is possible to avoid inverting mass matrices without sacrificing the accuracy of the scheme. This paper is an extension of Abgrall et al. (in: Karasözen B, Manguoglu M, Tezer-Sezgin M, Goktepe S, Ugur O (eds) Numerical mathematics and advanced applications ENUMATH 2015. Lecture notes in computational sciences and engineering, vol 112, Springer, Berlin, 2016) and Ricchiuto and Abgrall (J Comput Phys 229(16):5653–5691, 2010).

[1]  Manuel Quezada de Luna,et al.  High-order local maximum principle preserving (MPP) discontinuous Galerkin finite element method for the transport equation , 2017, J. Comput. Phys..

[2]  J. Remacle,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[3]  M. Minion,et al.  Accurate projection methods for the incompressible Navier—Stokes equations , 2001 .

[4]  L. Greengard,et al.  Spectral Deferred Correction Methods for Ordinary Differential Equations , 2000 .

[5]  R. Abgrall,et al.  Linear and non-linear high order accurate residual distribution schemes for the discretization of the steady compressible Navier-Stokes equations , 2015, J. Comput. Phys..

[6]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[7]  Stéphanie Salmon,et al.  Arbitrary High-Order Finite Element Schemes and High-Order Mass Lumping , 2007, Int. J. Appl. Math. Comput. Sci..

[8]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[9]  Rémi Abgrall,et al.  Residual distribution schemes: Current status and future trends , 2006 .

[10]  A. Bourlioux,et al.  High-order multi-implicit spectral deferred correction methods for problems of reactive flow , 2003 .

[11]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[12]  A. Bressan Hyperbolic Systems of Conservation Laws , 1999 .

[13]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[14]  M. Minion Semi-implicit spectral deferred correction methods for ordinary differential equations , 2003 .

[15]  Rémi Abgrall,et al.  Construction of very high order residual distribution schemes for steady inviscid flow problems on hybrid unstructured meshes , 2011, J. Comput. Phys..

[16]  Bojan Popov,et al.  Adaptive Semidiscrete Central-Upwind Schemes for Nonconvex Hyperbolic Conservation Laws , 2007, SIAM J. Sci. Comput..

[17]  S. Giuliani,et al.  Time-accurate solution of advection-diffusion problems by finite elements , 1984 .

[18]  Jean E. Roberts,et al.  Higher Order Triangular Finite Elements with Mass Lumping for the Wave Equation , 2000, SIAM J. Numer. Anal..

[19]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[20]  P. Hansbo,et al.  Edge stabilization for Galerkin approximations of convection?diffusion?reaction problems , 2004 .

[21]  Rémi Abgrall,et al.  How to Avoid Mass Matrix for Linear Hyperbolic Problems , 2016, ENUMATH.

[22]  Jean-Luc Guermond,et al.  A correction technique for the dispersive effects of mass lumping for transport problems , 2013 .

[23]  Roland Glowinski,et al.  Numerical Methods for the Vector-Valued Solutions of Non-smooth Eigenvalue Problems , 2010, J. Sci. Comput..

[24]  O. C. Zienkiewicz,et al.  The solution of non‐linear hyperbolic equation systems by the finite element method , 1984 .

[25]  Mengping Zhang,et al.  STRONG STABILITY PRESERVING PROPERTY OF THE DEFERRED CORRECTION TIME DISCRETIZATION , 2008 .

[26]  Rémi Abgrall,et al.  Essentially non-oscillatory Residual Distribution schemes for hyperbolic problems , 2006, J. Comput. Phys..

[27]  Lilia Krivodonova,et al.  Limiters for high-order discontinuous Galerkin methods , 2007, J. Comput. Phys..

[28]  Rémi Abgrall,et al.  Explicit Runge-Kutta residual distribution schemes for time dependent problems: Second order case , 2010, J. Comput. Phys..

[29]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems , 1986 .

[30]  R. Abgrall,et al.  An Example of High Order Residual Distribution Scheme Using non-Lagrange Elements , 2010, J. Sci. Comput..

[31]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .