Likelihood analysis of the multivariate ordinal probit regression model for repeated ordinal responses

We consider the analysis of longitudinal ordinal data, meaning regression-like analysis when the response variable is categorical with ordered categories, and is measured repeatedly over time (or space) on the experimental or sampling units. Particular attention is given to the multivariate ordinal probit regression model, in which the correlation between ordered categorical responses on the same unit at different times (or locations) is modeled with a latent variable that has a multivariate normal distribution. An algorithm for maximum likelihood analysis of this model is proposed and the analysis is demonstrated on an example. Simulations clarify the extent to which maximum likelihood estimators can be more efficient than generalized estimating equations (GEE) estimators of regression coefficients and the extent to which likelihood ratio tests can be more accurate than tests based on standard errors and approximate normality of GEE estimators.

[1]  Joseph B. Lang,et al.  Association-Marginal Modeling of Multivariate Categorical Responses: A Maximum Likelihood Approach , 1999 .

[2]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[3]  Frank Bretz,et al.  Comparison of Methods for the Computation of Multivariate t Probabilities , 2002 .

[4]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[5]  A. Toledano,et al.  Ordinal regression methodology for ROC curves derived from correlated data. , 1996, Statistics in medicine.

[6]  S. Chib,et al.  Analysis of multivariate probit models , 1998 .

[7]  A. Agresti,et al.  The analysis of ordered categorical data: An overview and a survey of recent developments , 2005 .

[8]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[9]  D. Anderson,et al.  Algorithms for minimization without derivatives , 1974 .

[10]  T. Lumley Generalized estimating equations for ordinal data: a note on working correlation structures. , 1996, Biometrics.

[11]  Y. Qu,et al.  Latent variable models for clustered ordinal data. , 1995, Biometrics.

[12]  A. Agresti,et al.  Modeling Clustered Ordered Categorical Data: A Survey , 2001 .

[13]  B. Efron,et al.  Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher information , 1978 .

[14]  A. Genz Numerical Computation of Multivariate Normal Probabilities , 1992 .

[15]  Luigi Pace,et al.  Principles of statistical inference : from a neo-Fisherian perspective , 1997 .

[16]  J. Ashford,et al.  Multi-variate probit analysis. , 1970, Biometrics.

[17]  Ib M. Skovgaard,et al.  A Second-Order Investigation of Asymptotic Ancillarity , 1985 .

[18]  S. Lipsitz,et al.  Analysis of repeated categorical data using generalized estimating equations. , 1994, Statistics in medicine.

[19]  Aleksandra Nojković Qualitative response models: A survey of methodology and illustrative applications , 2007 .

[20]  Ross L. Prentice,et al.  Likelihood inference in a correlated probit regression model , 1984 .

[21]  Bobby Schnabel,et al.  A modular system of algorithms for unconstrained minimization , 1985, TOMS.

[22]  Alan,et al.  Comparison of Methods for the Computationof Multivariate Normal Probabilities , 1993 .

[23]  G Molenberghs,et al.  An application of maximum likelihood and generalized estimating equations to the analysis of ordinal data from a longitudinal study with cases missing at random. , 1994, Biometrics.

[24]  K Kim,et al.  A bivariate cumulative probit regression model for ordered categorical data. , 1995, Statistics in medicine.

[25]  B. Lindsay,et al.  On second-order optimality of the observed Fisher information , 1997 .

[26]  Geert Molenberghs,et al.  A pairwise likelihood approach to estimation in multilevel probit models , 2004, Comput. Stat. Data Anal..

[27]  Stuart R. Lipsitz,et al.  Analyzing bivariate ordinal data using a global odds ratio , 1995 .

[28]  M. Gail,et al.  A comparison of likelihood-based and marginal estimating equation methods for analysing repeated ordered categorical responses with missing data: application to an intervention trial of vitamin prophylaxis for oesophageal dysplasia. , 1994, Statistics in medicine.

[29]  Tsu-Tan Fu,et al.  A limited information estimator for the multivariate ordinal probit model , 2000 .

[30]  A. Agresti,et al.  Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.

[31]  Scott Menard,et al.  Multiple Problem Youth: Delinquency, Substance Use, and Mental Health Problems , 1991 .

[32]  C. S. Davis Semi-parametric and non-parametric methods for the analysis of repeated measurements with applications to clinical trials. , 1991, Statistics in medicine.

[33]  D. McFadden A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration , 1989 .

[34]  G. Tutz,et al.  Random effects in ordinal regression models , 1996 .

[35]  Paul A. Ruud,et al.  Simulation of multivariate normal rectangle probabilities and their derivatives theoretical and computational results , 1996 .

[36]  S. Zeger,et al.  Marginal Regression Models for Clustered Ordinal Measurements , 1996 .

[37]  J A Anderson,et al.  The grouped continuous model for multivariate ordered categorical variables and covariate adjustment. , 1985, Biometrics.

[38]  R. Brent Table errata: Algorithms for minimization without derivatives (Prentice-Hall, Englewood Cliffs, N. J., 1973) , 1975 .

[39]  P. McCullagh Regression Models for Ordinal Data , 1980 .

[40]  Ivy Liu The Analysis of Ordered Categorical Data : An Overview and a Survey of Recent Developments , 2005 .

[41]  ResponsesClaudia CzadoDepartment,et al.  Multivariate Probit Analysis of Binary Time Series Datawith Missing , 1996 .