Extent: Inferring Image Metadata from Context and Content

We present EXTENT, an image annotation system that combines the context and content information to annotate images with metadata that cannot be reliably inferred from either the context or the content alone. EXTENT first applies contextual information for restricting the search scope in an image database and reducing the complexity of ensuing content analysis. It can then afford to use more expensive (hence more robust) algorithms for performing content analysis within the restricted database scope. Our experiments show that effectively combining content with context information can infer metadata with high accuracy

[1]  Mor Naaman,et al.  From Where to What: Metadata Sharing for Digital Photographs with Geographic Coordinates , 2003, OTM.

[2]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[3]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[4]  Simon King,et al.  From context to content: leveraging context to infer media metadata , 2004, MULTIMEDIA '04.

[5]  Yan Ke,et al.  Efficient Near-duplicate Detection and Sub-image Retrieval , 2004 .

[6]  Kentaro Toyama,et al.  Geographic location tags on digital images , 2003, ACM Multimedia.

[7]  Marc Davis,et al.  Metadata creation system for mobile images , 2004, MobiSys '04.

[8]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[9]  Anind K. Dey,et al.  Understanding and Using Context , 2001, Personal and Ubiquitous Computing.

[10]  Edward Y. Chang,et al.  EXTENT: fusing context, content, and semantic ontology for photo annotation , 2005, CVDB '05.

[11]  Diomidis Spinellis Position-Annotated Photographs: A Geotemporal Web , 2003, IEEE Pervasive Comput..