Chemical Stability of CuWO4 for Photoelectrochemical Water Oxidation

Pure-phase CuWO4 photoanodes with 200 nm thickness were produced by spin-casting sol–gel precursors to evaluate their performance as photoelectrodes for water oxidation. The stability of CuWO4 in potassium phosphate (KPi) and potassium borate (KBi) buffers was evaluated as a function of pH and irradiance. CuWO4 photoanodes demonstrate higher stability at pH 3 and 5 in a 0.1 M KPi buffer and are significantly more stable over a 12 h period of illumination in a 0.1 M KBi buffer at pH 7 (∼75 μA/cm2 photocurrent at 1.23 V vs RHE (reversible hydrogen electrode) and 1 sun illumination) than in a 0.1 M KPi buffer at pH 7. The onset of photoelectrochemical water oxidation and electrochemical O2 reduction is dictated by Cu(3dx2–y2) states that reside at 0.4 V vs RHE, determined by linear sweep voltammetry. The onset for water oxidation is hindered by a large charge-transfer resistance, as high as 4.6 kΩ at 1 V vs RHE. Nevertheless, CuWO4 photoanodes show nearly quantitative faradic efficiency for water oxidation, ...

[1]  K. Domen,et al.  Photocatalytic Water Splitting: Recent Progress and Future Challenges , 2010 .

[2]  Artur Braun,et al.  A nanocomposite photoelectrode made of 2.2 eV band gap copper tungstate (CuWO4) and multi-wall carbon nanotubes for solar-assisted water splitting , 2013 .

[3]  C. Sorrell,et al.  Electrodeposited nanostructured WO3 thin films for photoelectrochemical applications , 2012 .

[4]  T. Mallouk,et al.  Dense layers of vertically oriented WO3 crystals as anodes for photoelectrochemical water oxidation. , 2012, Chemical communications.

[5]  J. Augustynski,et al.  Metal oxide photoanodes for water splitting. , 2011, Topics in current chemistry.

[6]  K. Sayama,et al.  Highly efficient photoelectrochemical water splitting using a thin film photoanode of BiVO4/SnO2/WO3 multi-composite in a carbonate electrolyte. , 2012, Chemical communications.

[7]  Vincent Laporte,et al.  Highly active oxide photocathode for photoelectrochemical water reduction. , 2011, Nature materials.

[8]  Jianjun He,et al.  Photoelectrochemistry of Nanostructured WO3 Thin Film Electrodes for Water Oxidation: Mechanism of Electron Transport , 2000 .

[9]  John A Turner,et al.  BiVO(4)/CuWO(4) heterojunction photoanodes for efficient solar driven water oxidation. , 2013, Physical chemistry chemical physics : PCCP.

[10]  Bin Yang,et al.  Strong photoresponse of nanostructured tungsten trioxide films prepared via a sol–gel route , 2007 .

[11]  M. Pouchard,et al.  A Photoelectrochemical Study of CuWO4 Single Crystals , 1984, March 16.

[12]  V. Wittwer,et al.  Dependence of WO 3 Electrochromic Absorption on Crystallinity , 1977 .

[13]  Brian A. Korgel,et al.  Electrochemical Synthesis and Characterization of p-CuBi2O4 Thin Film Photocathodes , 2012 .

[14]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[15]  Wei Chen,et al.  Synthesis and characterization of ultrathin WO3 nanodisks utilizing long-chain poly(ethylene glycol). , 2006, The journal of physical chemistry. B.

[16]  O. Khyzhun,et al.  First-principles calculations and X-ray spectroscopy studies of the electronic structure of CuWO4 , 2009 .

[17]  Thomas F. Jaramillo,et al.  Controlled Electrodeposition of Nanoparticulate Tungsten Oxide , 2002 .

[18]  G. Wallace,et al.  Sustained solar hydrogen generation using a dye-sensitised NiO photocathode/BiVO4 tandem photo-electrochemical device , 2012 .

[19]  M. Neumann-Spallart,et al.  Photoelectrochemical Characterization of Semitransparent WO3 Films , 2005 .

[20]  Michael Grätzel,et al.  Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes. , 2011, ChemSusChem.

[21]  Chia-Yu Lin,et al.  Cu2O|NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting , 2012 .

[22]  Y. Djaoued,et al.  Synthesis and Characterization of Macroporous Tungsten Oxide Films for Electrochromic Application , 2003 .

[23]  R. Nieminen,et al.  Structural Properties of Pure and Nickel-Modified Nanocrystalline Tungsten Trioxide , 2012 .

[24]  P. Schmitt,et al.  Polyol‐Mediated Synthesis and Properties of Nanoscale Molybdates/Tungstates: Color, Luminescence, Catalysis , 2011 .

[25]  B. Bartlett,et al.  Electrochemical deposition and photoelectrochemistry of CuWO4, a promising photoanode for water oxidation , 2011 .

[26]  R. Evarestov,et al.  Ab initio LCAO study of the atomic, electronic and magnetic structures and the lattice dynamics of triclinic CuWO4 , 2013 .

[27]  B. Chudasama,et al.  Single crystal growth and photoelectrochemical study of copper tungstate , 2005 .

[28]  B. Bartlett,et al.  Structure, optical properties, and magnetism of the full Zn(1-x)Cu(x)WO4 (0 ≤ x ≤ 1) composition range. , 2012, Inorganic chemistry.

[29]  B. Bartlett,et al.  Water Oxidation on a CuWO4–WO3 Composite Electrode in the Presence of [Fe(CN)6]3–: Toward Solar Z-Scheme Water Splitting at Zero Bias , 2012 .

[30]  Kyoung-Shin Choi,et al.  Effect of Electrolytes on the Selectivity and Stability of n-type WO3 Photoelectrodes for Use in Solar Water Oxidation , 2012 .

[31]  M. Fontecave,et al.  Mesoporous α-Fe2O3 thin films synthesized via the sol-gel process for light-driven water oxidation. , 2012, Physical chemistry chemical physics : PCCP.

[32]  Mott insulators: An early selection criterion for materials for photoelectrochemical H2 production , 2011 .

[33]  Stafford W. Sheehan,et al.  Hematite-based solar water splitting: challenges and opportunities , 2011 .

[34]  Haitao Yang,et al.  Structure, electrochromic and optical properties of WO3 film prepared by dip coating-pyrolysis , 2007 .

[35]  Mark E. Orazem,et al.  Electrochemical Impedance Spectroscopy: Orazem/Electrochemical , 2008 .

[36]  R. Hanson,et al.  Reactions of OH with butene isomers: measurements of the overall rates and a theoretical study. , 2011, The journal of physical chemistry. A.

[37]  S. Arora,et al.  Electrochemical characteristics of copper tungstate single crystals , 1990 .

[38]  Yanbiao Liu,et al.  Preparation of well-aligned WO3 nanoflake arrays vertically grown on tungsten substrate as photoanode for photoelectrochemical water splitting , 2012 .

[39]  J. Augustynski,et al.  Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications. , 2001, Journal of the American Chemical Society.

[40]  D. Cahen,et al.  Tungsten trioxide as a photoanode for a photoelectrochemical cell (PEC) , 1976, Nature.

[41]  Qi-yuan Chen,et al.  Photoelectrochemical and physical properties of WO3 films obtained by the polymeric precursor method , 2010 .

[42]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[43]  M. Lalic,et al.  Electronic structure and optical properties of CuWO4: An ab initio study , 2012 .

[44]  E. Meulenkamp Mechanism of WO3 electrodeposition from peroxy-tungstate solution , 1997 .

[45]  Turner,et al.  A realizable renewable energy future , 1999, Science.

[46]  Roberto Argazzi,et al.  Efficient photoelectrochemical water splitting by anodically grown WO3 electrodes. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[47]  N. Lewis,et al.  A quantitative assessment of the competition between water and anion oxidation at WO3 photoanodes in acidic aqueous electrolytes , 2012 .

[48]  P. Schmuki,et al.  Direct anodic growth of thick WO3 mesosponge layers and characterization of their photoelectrochemical response , 2010 .

[49]  Vittal K. Yachandra,et al.  Structure-activity correlations in a nickel-borate oxygen evolution catalyst. , 2012, Journal of the American Chemical Society.

[50]  Kyoung-Shin Choi,et al.  Synthesis and characterization of high surface area CuWO4 and Bi2WO6 electrodes for use as photoanodes for solar water oxidation , 2013 .

[51]  F. A. Benko,et al.  CuWO4 and Cu3WO6 as anodes for the photoelectrolysis of water , 1982 .

[52]  M. Lalic,et al.  Ab initio study of electronic, magnetic and optical properties of CuWO4 tungstate , 2011 .

[53]  Lin-Wang Wang,et al.  Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution , 2012, 1203.1970.

[54]  J. A. Seabold,et al.  Effect of a Cobalt-Based Oxygen Evolution Catalyst on the Stability and the Selectivity of Photo-Oxidation Reactions of a WO3 Photoanode , 2011 .

[55]  D. Nocera,et al.  Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutral and natural waters , 2011 .

[56]  P. Maggard,et al.  Photoelectrochemical Investigation and Electronic Structure of a p-Type CuNbO3 Photocathode , 2011 .

[57]  P. Pandey,et al.  Spray deposition process of polycrystalline thin films of CuWO4 and study on its photovoltaic electrochemical properties , 2005 .

[58]  Chang Woo Kim,et al.  Facile preparation of p-CuO and p-CuO/n-CuWO4 junction thin films and their photoelectrochemical properties , 2012 .

[59]  Juan Bisquert,et al.  Water oxidation at hematite photoelectrodes: the role of surface states. , 2012, Journal of the American Chemical Society.

[60]  G. Gary Wang,et al.  Hydrogen-treated WO3 nanoflakes show enhanced photostability , 2012 .

[61]  A. Braun,et al.  Copper Tungstate (CuWO 4 )–Based Materials for Photoelectrochemical Hydrogen Production , 2012 .

[62]  P. P. Lottici,et al.  Micro-Raman spectroscopy on polyethylene-glycol assisted sol–gel meso and macroporous WO3 thin films for electrochromic applications , 2008 .

[63]  Desheng Kong,et al.  A photoelectrochemical study on the features of carbonate-catalyzed water oxidation at illuminated TiO2/Solution interface , 2012, Journal of Solid State Electrochemistry.