On G-$(n,d)$-rings

The main aim of this paper is to investigate new class of rings called, for positive integers $n$ and $d$, $G-(n,d)-$rings, over which every $n$-presented module has a Gorenstein projective dimension at most $d$. Hence we characterize $n$-coherent $G-(n,0)-$rings. We conclude by various examples of $G-(n,d)-$rings.

[1]  Emily M. McLean Gorenstein Injective Modules , 2011 .

[2]  Overtoun M. G. Jenda,et al.  Relative homological algebra , 1956 .

[3]  N. Mahdou,et al.  Commutative rings of small global Gorenstein dimensions , 2008 .

[4]  D. Bennis,et al.  Rings Over which All Modules are Strongly Gorenstein Projective , 2007, 0712.0127.

[5]  D. Bennis,et al.  Global Gorenstein dimensions of polynomial rings and of direct product of rings , 2007, 0712.0126.

[6]  Paul Garrett,et al.  Commutative rings I , 2007 .

[7]  Zhao Ying-cai On Gorenstein Flat Modules , 2007 .

[8]  D. Bennis,et al.  Global Gorenstein dimensions , 2006, math/0611358.

[9]  N. Mahdou,et al.  Strongly Gorenstein projective, injective, and flat modules , 2006, math/0606770.

[10]  N. Mahdou On 2-von Neumann Regular Rings , 2005 .

[11]  N. Mahdou,et al.  Trivial Extensions Defined by Coherent-like Conditions , 2004, math/0606696.

[12]  Henrik Holm,et al.  Gorenstein homological dimensions , 2004 .

[13]  N. Mahdou,et al.  Trivial Extensions of Local Rings and a Conjecture of Costa , 2006, math/0606694.

[14]  C. Weibel,et al.  An Introduction to Homological Algebra: References , 1960 .

[15]  W. K. Nicholson,et al.  On Quasi-Frobenius Rings , 2003 .

[16]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[17]  N. Mahdou ON COSTA'S CONJECTURE , 2001 .

[18]  M. E. Keating,et al.  An Introduction to Rings and Modules: With K-Theory in View , 2000 .

[19]  Chitikila Musili,et al.  Introduction to Rings And Modules , 1997 .

[20]  Overtoun M. G. Jenda,et al.  Gorenstein injective and projective modules , 1995 .

[21]  D. Costa Parameterizing families of non-noetherian rings , 1994 .

[22]  C. Faith Review: James A. Huckaba, Commutative rings with zero divisors , 1990 .

[23]  Sarah Glaz,et al.  Commutative Coherent Rings , 1989 .

[24]  J. Huckaba Commutative Rings with Zero Divisors , 1988 .

[25]  J. Lambek Review: Joseph J. Rotman, An introduction to homological algebra , 1983 .

[26]  R. Fossum,et al.  Trivial Extensions of Abelian Categories , 1975 .

[27]  M. Bridger,et al.  Stable Module Theory , 1969 .

[28]  Christian Peskine,et al.  Anneaux de gorenstein, et torsion en algébre commutative , 1967 .

[29]  H. Bass Finitistic dimension and a homological generalization of semi-primary rings , 1960 .