A computational homogenization approach for Li-ion battery cells : Part 1 – formulation

[1]  R. Kaufmann Fick's law , 2020, Catalysis from A to Z.

[2]  Min Zhou,et al.  Coupled mechano-diffusional driving forces for fracture in electrode materials , 2013 .

[3]  Lallit Anand,et al.  Hydrogen in metals: A coupled theory for species diffusion and large elastic–plastic deformations , 2013 .

[4]  A. Salvadori,et al.  Minimum theorems in 3D incremental linear elastic fracture mechanics , 2013, International Journal of Fracture.

[5]  Feng Gao,et al.  Interface-reaction controlled diffusion in binary solids with applications to lithiation of silicon in lithium-ion batteries , 2013 .

[6]  L. Anand A Cahn–Hilliard-type theory for species diffusion coupled with large elastic–plastic deformations , 2012 .

[7]  Z. Suo,et al.  Fracture and debonding in lithium-ion batteries with electrodes of hollow core–shell nanostructures , 2012 .

[8]  K. Maute,et al.  Multiscale design optimization of lithium ion batteries using adjoint sensitivity analysis , 2012 .

[9]  Mgd Marc Geers,et al.  A multi-scale approach to bridge microscale damage and macroscale failure: a nested computational homogenization-localization framework , 2012, International Journal of Fracture.

[10]  M. Bazant Phase-Field Theory of Ion Intercalation Kinetics , 2012 .

[11]  F. Gao,et al.  A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries , 2012 .

[12]  Allan F. Bower,et al.  A simple finite element model of diffusion, finite deformation, plasticity and fracture in lithium ion insertion electrode materials , 2012 .

[13]  Rajlakshmi Purkayastha,et al.  An integrated 2-D model of a lithium ion battery: the effect of material parameters and morphology on storage particle stress , 2012 .

[14]  Martin Z. Bazant,et al.  Nonequilibrium Thermodynamics of Porous Electrodes , 2012, 1204.2934.

[15]  V. Bârsan,et al.  Trends in Electromagnetism - From Fundamentals to Applications , 2012 .

[16]  R. P. Lungu Thermodynamics of Electric and Magnetic Systems , 2012 .

[17]  P. Ajayan,et al.  High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers. , 2012, Nano letters.

[18]  Ronald E. Miller,et al.  Continuum mechanics and thermodynamics , 2011 .

[19]  D. Abraham,et al.  Real-Time Stress Measurements in Lithium-ion Battery Negative-electrodes , 2012, 1201.2155.

[20]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[21]  Claus Daniel,et al.  A study of lithium ion intercalation induced fracture of silicon particles used as anode material in Li-ion battery , 2011 .

[22]  Yi Cui,et al.  Size-dependent fracture of Si nanowire battery anodes , 2011 .

[23]  Zonghai Chen,et al.  Advanced cathode materials for lithium-ion batteries , 2011 .

[24]  D. Stephenson,et al.  Modeling 3D Microstructure and Ion Transport in Porous Li-Ion Battery Electrodes , 2011 .

[25]  Bruce Dunn,et al.  Three-dimensional electrodes and battery architectures , 2011 .

[26]  Zhigang Suo,et al.  Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge , 2011 .

[27]  Alberto Salvadori,et al.  Minimum theorems in incremental linear elastic fracture mechanics , 2011 .

[28]  A. Bower,et al.  A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell , 2011, 1107.6020.

[29]  Moses Ender,et al.  Three-dimensional reconstruction of a composite cathode for lithium-ion cells , 2011 .

[30]  Zhigang Suo,et al.  Inelastic hosts as electrodes for high-capacity lithium-ion batteries , 2011 .

[31]  Dieter Bothe,et al.  On the Maxwell-Stefan Approach to Multicomponent Diffusion , 2010, 1007.1775.

[32]  A. Salvadori Crack kinking in brittle materials , 2010 .

[33]  V. Srinivasan,et al.  In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation , 2010, 1108.0647.

[34]  V. G. Kouznetsova,et al.  Multi-scale computational homogenization: Trends and challenges , 2010, J. Comput. Appl. Math..

[35]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[36]  Stephen A. Hackney,et al.  High Energy Density Lithium Batteries: Materials, Engineering, Applications , 2010 .

[37]  M. Verbrugge,et al.  Diffusion-Induced Stress, Interfacial Charge Transfer, and Criteria for Avoiding Crack Initiation of Electrode Particles , 2010 .

[38]  Zhigang Suo,et al.  Large deformation and electrochemistry of polyelectrolyte gels , 2010 .

[39]  Jake Christensen,et al.  Modeling Diffusion-Induced Stress in Li-Ion Cells with Porous Electrodes , 2010 .

[40]  Nigel P. Brandon,et al.  Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery , 2010 .

[41]  Ralph E. White,et al.  Theoretical Analysis of Stresses in a Lithium Ion Cell , 2010 .

[42]  Jiang Ziqiang,et al.  SiをドープしたMg 3 Y 2 Ge 3 O 12 :Ce 3+ ガーネット蛍光体の暖かい白色発光ダイオード用黄橙色発光の増進 , 2010 .

[43]  M. Gurtin,et al.  The Mechanics and Thermodynamics of Continua , 2010 .

[44]  Kurt Maute,et al.  Numerical modeling of electrochemical-mechanical interactions in lithium polymer batteries , 2009 .

[45]  Mark W. Verbrugge,et al.  Stress and Strain-Energy Distributions within Diffusion-Controlled Insertion-Electrode Particles Subjected to Periodic Potential Excitations , 2009 .

[46]  Mark W. Verbrugge,et al.  Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation , 2009 .

[47]  M. Bazant,et al.  Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. , 2009, Advances in colloid and interface science.

[48]  Michael F. Ashby,et al.  Nanomaterials, nanotechnologies and design , 2009 .

[49]  W. Brekelmans,et al.  FE2 computational homogenization for the thermo-mechanical analysis of heterogeneous solids , 2008 .

[50]  R. Huggins Advanced Batteries: Materials Science Aspects , 2008 .

[51]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[52]  A. Salvadori A plasticity framework for (linear elastic) fracture mechanics , 2008 .

[53]  M. Geers,et al.  Computational homogenization for heat conduction in heterogeneous solids , 2008 .

[54]  Ann Marie Sastry,et al.  Mesoscale Modeling of a Li-Ion Polymer Cell , 2007 .

[55]  Ann Marie Sastry,et al.  Selection of Conductive Additives in Li-Ion Battery Cathodes A Numerical Study , 2007 .

[56]  S. Lam Multicomponent diffusion revisited , 2006 .

[57]  Thomas J. Richardson,et al.  Electron Microscopy Study of the LiFePO4 to FePO4 Phase Transition , 2006 .

[58]  N. J. Pagano,et al.  Statistically Equivalent Representative Volume Elements for Unidirectional Composite Microstructures: Part I - Without Damage , 2006 .

[59]  W. Craig Carter,et al.  Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries , 2005 .

[60]  Thomas J. Richardson,et al.  Modeling the Behavior of Electroactive Polymers for Overcharge Protection of Lithium Batteries , 2004 .

[61]  Mgd Marc Geers,et al.  Multi-scale first-order and second-order computational homogenization of microstructures towards continua , 2003 .

[62]  V. Kouznetsova,et al.  Multi‐scale constitutive modelling of heterogeneous materials with a gradient‐enhanced computational homogenization scheme , 2002 .

[63]  A. Gokhale,et al.  Representative volume element for non-uniform micro-structure , 2002 .

[64]  N. Kikuchi,et al.  A class of general algorithms for multi-scale analyses of heterogeneous media , 2001 .

[65]  J. Sethian,et al.  Modelling a growth instability in a stressed solid , 2001 .

[66]  Fpt Frank Baaijens,et al.  An approach to micro-macro modeling of heterogeneous materials , 2001 .

[67]  A. Salvadori,et al.  Implementation of a symmetric boundary element method in transient heat conduction with semi-analytical integrations , 1999 .

[68]  J. Schröder,et al.  Computational homogenization analysis in finite plasticity Simulation of texture development in polycrystalline materials , 1999 .

[69]  W. Brekelmans,et al.  Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling , 1998 .

[70]  W. Drugan,et al.  A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites , 1996 .

[71]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[72]  P. M. Squet Local and Global Aspects in the Mathematical Theory of Plasticity , 1985 .

[73]  J. Willis Elasticity Theory of Composites , 1982 .

[74]  P. Germain,et al.  The Method of Virtual Power in Continuum Mechanics. Part 2: Microstructure , 1973 .

[75]  J. Cahn,et al.  A linear theory of thermochemical equilibrium of solids under stress , 1973 .

[76]  George N. Hatsopoulos,et al.  Thermionic energy conversion , 1966 .

[77]  Rodney Hill,et al.  Continuum micro-mechanics of elastoplastic polycrystals , 1965 .

[78]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[79]  Henry Eyring,et al.  Hydrogen in metals , 1948 .