Kernel-Based Nonlinear Blind Source Separation
暂无分享,去创建一个
Motoaki Kawanabe | Andreas Ziehe | Klaus-Robert Müller | Stefan Harmeling | M. Kawanabe | K. Müller | A. Ziehe | S. Harmeling
[1] Schuster,et al. Separation of a mixture of independent signals using time delayed correlations. , 1994, Physical review letters.
[2] Bernhard Schölkopf,et al. Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.
[3] Motoaki Kawanabe,et al. A resampling approach to estimate the stability of one-dimensional or multidimensional independent components , 2002, IEEE Transactions on Biomedical Engineering.
[4] Christian Jutten,et al. Source separation in post-nonlinear mixtures , 1999, IEEE Trans. Signal Process..
[5] Andreas Ziehe,et al. Blind Source Separation Techniques for Decomposing Event-Related Brain Signals , 2004, Int. J. Bifurc. Chaos.
[6] J. Rissanen,et al. Modeling By Shortest Data Description* , 1978, Autom..
[7] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[8] Dinh Tuan Pham,et al. BLIND SOURCE SEPARATION IN POST NONLINEAR MIXTURES , 2001 .
[9] Pei Ling Lai,et al. Ica Using Kernel Canonical Correlation Analysis , 2000 .
[10] Andreas Ziehe,et al. TDSEP { an e(cid:14)cient algorithm for blind separation using time structure , 1998 .
[11] Erkki Oja,et al. DETECTING PROCESS STATE CHANGES BY NONLINEAR BLIND SOURCE SEPARATION , 2003 .
[12] Gunnar Rätsch,et al. An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.
[13] Gilles Burel,et al. Blind separation of sources: A nonlinear neural algorithm , 1992, Neural Networks.
[14] A. Hyvärinen,et al. Nonlinear Blind Source Separation by Self-Organizing Maps , 1996 .
[15] Te-Won Lee,et al. Blind source separation of nonlinear mixing models , 1997, Neural Networks for Signal Processing VII. Proceedings of the 1997 IEEE Signal Processing Society Workshop.
[16] Antoine Souloumiac,et al. Jacobi Angles for Simultaneous Diagonalization , 1996, SIAM J. Matrix Anal. Appl..
[17] Jean-Franois Cardoso. High-Order Contrasts for Independent Component Analysis , 1999, Neural Computation.
[18] Alexander J. Smola,et al. Learning with kernels , 1998 .
[19] Matthias W. Seeger,et al. Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.
[20] Erkki Oja,et al. Independent Component Analysis , 2001 .
[21] Antti Honkela,et al. Bayesian Non-Linear Independent Component Analysis by Multi-Layer Perceptrons , 2000 .
[22] Eric Moulines,et al. A blind source separation technique using second-order statistics , 1997, IEEE Trans. Signal Process..
[23] Katya Scheinberg,et al. Efficient SVM Training Using Low-Rank Kernel Representations , 2002, J. Mach. Learn. Res..
[24] Juha Karhunen,et al. A Maximum Likelihood Approach to Nonlinear Blind Source Separation , 1997, ICANN.
[25] Terrence J. Sejnowski,et al. Nonlinear blind source separation using kernel feature spaces , 2001 .
[26] Jean-Francois Cardoso,et al. Blind signal separation: statistical principles , 1998, Proc. IEEE.
[27] Nello Cristianini,et al. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .
[28] Motoaki Kawanabe,et al. Estimating the Reliability of ICA Projections , 2001, NIPS.
[29] Michael I. Jordan,et al. Kernel independent component analysis , 2003 .
[30] T. Sejnowski,et al. Separation of post-nonlinear mixtures using ACE and temporal decorrelation , 2001 .
[31] Andrzej Cichocki,et al. Information-theoretic approach to blind separation of sources in non-linear mixture , 1998, Signal Process..
[32] Gunnar Rätsch,et al. Input space versus feature space in kernel-based methods , 1999, IEEE Trans. Neural Networks.
[33] Nello Cristianini,et al. An introduction to Support Vector Machines , 2000 .
[34] Juha Karhunen,et al. Nonlinear Independent Component Analysis Using Ensemble Learning: Experiments and Discussion , 2000 .
[35] Jan Awrejcewicz,et al. Bifurcation and Chaos , 1995 .
[36] Motoaki Kawanabe,et al. Kernel Feature Spaces and Nonlinear Blind Souce Separation , 2001, NIPS.
[37] Aapo Hyvärinen,et al. Nonlinear independent component analysis: Existence and uniqueness results , 1999, Neural Networks.
[38] Bernhard Schölkopf,et al. Sparse Greedy Matrix Approximation for Machine Learning , 2000, International Conference on Machine Learning.
[39] Juan K. Lin,et al. Faithful Representation of Separable Distributions , 1997, Neural Computation.