Faith & falsity

A theory T is trustworthy iff, whenever a theory U is interpretable in T , then it is faithfully interpretable. In this paper we provide a characterization of trustworthiness. We provide a simple proof of Friedman’s Theorem that finitely axiomatized, sequential, consistent theories are trustworthy. We provide an example of a theory whose schematic predicate logic is complete Π2.

[1]  Jan Krajícek,et al.  A note on proofs of falsehood , 1987, Archive for Mathematical Logic.

[2]  Albert Visser,et al.  Rules and Arithmetics , 1998, Notre Dame J. Formal Log..

[3]  Albert Visser,et al.  The formalization of Interpretability , 1991, Stud Logica.

[4]  G. Boolos,et al.  Self-Reference and Modal Logic , 1985 .

[5]  C. Smorynski Nonstandard Models and Related Developments , 1985 .

[6]  Albert Visser,et al.  An Overview of Interpretability Logic , 1997, Advances in Modal Logic.

[7]  Franco Montagna,et al.  A Minimal Predicative Set Theory , 1994, Notre Dame J. Formal Log..

[8]  Petr Hájek,et al.  Metamathematics of First-Order Arithmetic , 1993, Perspectives in mathematical logic.

[9]  Jeff B. Paris,et al.  On the scheme of induction for bounded arithmetic formulas , 1987, Ann. Pure Appl. Log..

[10]  Logical Schemes for First-Order Theories , 1997, FOCS 1997.

[11]  Rineke Verbrugge,et al.  A small reflection principle for bounded arithmetic , 1994, Journal of Symbolic Logic.

[12]  Albert Visser The unprovability of small inconsistency , 1993, Arch. Math. Log..

[13]  Vítezslav Svejdar Modal Analysis of Generalized Rosser Sentences , 1983, J. Symb. Log..

[14]  外史 竹内 Bounded Arithmetic と計算量の根本問題 , 1996 .