How to prove the Maxwell conjecture via spatial coupling — A proof of concept

Investigations on spatially coupled codes have lead to the conjecture that, in the infinite size limit, the average input-output conditional entropy for spatially coupled low-density parity-check ensembles, over binary memoryless symmetric channels, equals the entropy of the underlying individual ensemble. We give a self-contained proof of this conjecture for the case when the variable degrees have a Poisson distribution and all check degrees are even. The ingredients of the proof are the interpolation method and the Nishimori identities. We explain why this result is an important step towards proving the Maxwell conjecture in the theory of low-density parity-check codes.

[1]  Kamil Sh. Zigangirov,et al.  Time-varying periodic convolutional codes with low-density parity-check matrix , 1999, IEEE Trans. Inf. Theory.

[2]  Rudiger Urbanke,et al.  Threshold saturation via spatial coupling: Why convolutional LDPC ensembles perform so well over the BEC , 2010, ISIT.

[3]  F. Guerra,et al.  The High Temperature Region of the Viana–Bray Diluted Spin Glass Model , 2003, cond-mat/0302401.

[4]  Nicolas Macris,et al.  Exact solution for the conditional entropy of Poissonian LDPC codes over the Binary Erasure Channel , 2007, 2007 IEEE International Symposium on Information Theory.

[5]  Nicolas Macris,et al.  Sharp Bounds on Generalized EXIT Functions , 2007, IEEE Transactions on Information Theory.

[6]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[7]  A. Montanari The glassy phase of Gallager codes , 2001, cond-mat/0104079.

[8]  Adel Javanmard,et al.  Information-Theoretically Optimal Compressed Sensing via Spatial Coupling and Approximate Message Passing , 2011, IEEE Transactions on Information Theory.

[9]  Rüdiger L. Urbanke,et al.  Wave-Like Solutions of General One-Dimensional Spatially Coupled Systems , 2012, ArXiv.

[10]  David Gamarnik,et al.  Combinatorial approach to the interpolation method and scaling limits in sparse random graphs , 2010, STOC '10.

[11]  Nicolas Macris,et al.  Griffith–Kelly–Sherman Correlation Inequalities: A Useful Tool in the Theory of Error Correcting Codes , 2007, IEEE Transactions on Information Theory.

[12]  Henry D. Pfister,et al.  The effect of spatial coupling on compressive sensing , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[13]  Florent Krzakala,et al.  Statistical physics-based reconstruction in compressed sensing , 2011, ArXiv.

[14]  Rüdiger L. Urbanke,et al.  Spatially coupled ensembles universally achieve capacity under belief propagation , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[15]  Nicolas Macris,et al.  Threshold Saturation in Spatially Coupled Constraint Satisfaction Problems , 2011, ArXiv.