A Simple D2-Sampling Based PTAS for k-Means and Other Clustering Problems
暂无分享,去创建一个
[1] Sergei Vassilvitskii,et al. How slow is the k-means method? , 2006, SCG '06.
[2] Johannes Blömer,et al. Bregman Clustering for Separable Instances , 2010, SWAT.
[3] K. Wakimoto,et al. Efficient and Effective Querying by Image Content , 1994 .
[4] Avrim Blum,et al. Stability Yields a PTAS for k-Median and k-Means Clustering , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.
[5] Nir Ailon,et al. Streaming k-means approximation , 2009, NIPS.
[6] Sergei Vassilvitskii,et al. k-means++: the advantages of careful seeding , 2007, SODA '07.
[7] Marek Karpinski,et al. Approximation schemes for clustering problems , 2003, STOC '03.
[8] Piotr Indyk,et al. Approximate clustering via core-sets , 2002, STOC '02.
[9] Amit Kumar,et al. Linear-time approximation schemes for clustering problems in any dimensions , 2010, JACM.
[10] S. Dasgupta. The hardness of k-means clustering , 2008 .
[11] Antony F. R. Brown. Language Translation , 1958, JACM.
[12] Dan Feldman,et al. Data reduction for weighted and outlier-resistant clustering , 2012, SODA.
[13] Bodo Manthey,et al. Smoothed Analysis of the k-Means Method , 2011, JACM.
[14] J. Matou. On Approximate Geometric K-clustering , 1999 .
[15] Sariel Har-Peled,et al. On coresets for k-means and k-median clustering , 2004, STOC '04.
[16] Amit Kumar,et al. A Simple D 2-Sampling Based PTAS for k-Means and other Clustering Problems , 2012, COCOON.
[17] Dan Feldman,et al. Turning big data into tiny data: Constant-size coresets for k-means, PCA and projective clustering , 2013, SODA.
[18] Michael J. Swain,et al. Color indexing , 1991, International Journal of Computer Vision.
[19] Michael Langberg,et al. A unified framework for approximating and clustering data , 2011, STOC.
[20] Shimon Even,et al. An On-Line Edge-Deletion Problem , 1981, JACM.
[21] Sariel Har-Peled,et al. How Fast Is the k-Means Method? , 2005, SODA '05.
[22] Ankit Aggarwal,et al. Adaptive Sampling for k-Means Clustering , 2009, APPROX-RANDOM.
[23] Sariel Har-Peled,et al. Smaller Coresets for k-Median and k-Means Clustering , 2005, SCG.
[24] Richard A. Harshman,et al. Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..
[25] Andrea Vattani,et al. k-means Requires Exponentially Many Iterations Even in the Plane , 2008, SCG '09.
[26] Geoffrey Zweig,et al. Syntactic Clustering of the Web , 1997, Comput. Networks.
[27] S. P. Lloyd,et al. Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.
[28] Johannes Blömer,et al. Coresets and approximate clustering for Bregman divergences , 2009, SODA.
[29] Tricia Walker,et al. Computer science , 1996, English for academic purposes series.
[30] Inderjit S. Dhillon,et al. Clustering with Bregman Divergences , 2005, J. Mach. Learn. Res..
[31] Marcel R. Ackermann. Algorithms for the Bregman k-Median problem , 2009 .
[32] Jan Rittinger,et al. Efficient and Effective Querying by Image Content , 2004 .
[33] Mary Inaba,et al. Applications of weighted Voronoi diagrams and randomization to variance-based k-clustering: (extended abstract) , 1994, SCG '94.
[34] Dan Feldman,et al. A PTAS for k-means clustering based on weak coresets , 2007, SCG '07.
[35] Ke Chen,et al. On k-Median clustering in high dimensions , 2006, SODA '06.
[36] Christian Sohler,et al. Coresets in dynamic geometric data streams , 2005, STOC '05.
[37] Ke Chen,et al. On Coresets for k-Median and k-Means Clustering in Metric and Euclidean Spaces and Their Applications , 2009, SIAM J. Comput..
[38] M. Inaba. Application of weighted Voronoi diagrams and randomization to variance-based k-clustering , 1994, SoCG 1994.
[39] Marcel R. Ackermann,et al. Clustering for metric and non-metric distance measures , 2008, SODA '08.