Structure dependence of oscillation characteristics of resonant-tunneling-diode terahertz oscillators associated with intrinsic and extrinsic delay times

We investigate the effect of intrinsic and extrinsic delay times on the oscillation characteristics of resonant-tunneling-diode (RTD) terahertz oscillators. The intrinsic delay time is composed of the electron dwell time in the resonant tunneling region and the electron transit time in the collector depletion region. We obtain and discuss the structure dependence of these factors in terms of the oscillation frequency and output power measured for RTD oscillators with different quantum-well and collector-spacer thicknesses and different air-bridge widths between the RTD and a slot antenna. The highest oscillation frequency achieved in this experiment is 1.86 THz for the well and spacer thicknesses of 2.5 and 12 nm, respectively, with a 1-µm-wide air bridge. In this structure, the extrinsic delay time (80 fs) estimated from the parasitic elements is more than double the intrinsic delay time (35 fs). It is shown theoretically that an oscillation frequency of over 2 THz is possible upon the reduction in the extrinsic delay time caused by the bulk and spread resistances in RTDs.

[1]  Jun Terada,et al.  Terahertz wireless communications based on photonics technologies. , 2013, Optics express.

[2]  M. Asada,et al.  High-Power Operation of Terahertz Oscillators With Resonant Tunneling Diodes Using Impedance-Matched Antennas and Array Configuration , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[3]  K. Ishigaki,et al.  Direct intensity modulation and wireless data transmission characteristics of terahertz-oscillating resonant tunnelling diodes , 2012 .

[4]  K. M. Chung,et al.  Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling. , 2012, Optics express.

[5]  M. Reddy,et al.  Monolithic Schottky-collector resonant tunnel diode oscillator arrays to 650 GHz , 1997, IEEE Electron Device Letters.

[6]  T. C. L. G. Sollner,et al.  Fundamental oscillations up to 200 GHz in resonant tunneling diodes and new estimates of their maximum oscillation frequency from stationary‐state tunneling theory , 1988 .

[7]  M. Feng,et al.  InP Pseudormorphic Heterojunction Bipolar Transistor (PHBT) With Ft > 750GHz , 2007, 2007 IEEE 19th International Conference on Indium Phosphide & Related Materials.

[8]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[9]  Safumi Suzuki,et al.  Resonant Tunneling Diodes for Sub-Terahertz and Terahertz Oscillators , 2008 .

[10]  Safumi Suzuki,et al.  Direct intensity modulation of resonant-tunneling-diode terahertz oscillator up to ∼30 GHz , 2015, IEICE Electron. Express.

[11]  Safumi Suzuki,et al.  Terahertz oscillation of resonant tunneling diodes with deep and thin quantum wells , 2013, IEICE Electron. Express.

[12]  Hiroshi Ito,et al.  InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth , 2000 .

[13]  B. Williams Terahertz quantum cascade lasers , 2007, 2008 Asia Optical Fiber Communication & Optoelectronic Exposition & Conference.

[14]  Ehsan Afshari,et al.  High Power Terahertz and Millimeter-Wave Oscillator Design: A Systematic Approach , 2011, IEEE Journal of Solid-State Circuits.

[15]  Safumi Suzuki,et al.  Fundamental oscillation of resonant tunneling diodes above 1 THz at room temperature , 2010 .

[16]  L. Samoska An Overview of Solid-State Integrated Circuit Amplifiers in the Submillimeter-Wave and THz Regime , 2011, IEEE Transactions on Terahertz Science and Technology.

[17]  Safumi Suzuki,et al.  Fundamental Oscillation up to 1.31 THz in Resonant Tunneling Diodes with Thin Well and Barriers , 2012 .

[18]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[19]  Peter Meissner,et al.  Resonant-tunnelling-diode oscillators operating at frequencies above 1.1 THz , 2011 .

[20]  J. Alamo Nanometre-scale electronics with III–V compound semiconductors , 2011, Nature.

[21]  Safumi Suzuki,et al.  Fundamental Oscillation up to 1.42 THz in Resonant Tunneling Diodes by Optimized Collector Spacer Thickness , 2014 .

[22]  Safumi Suzuki,et al.  Operation of resonant-tunneling diodes with strong back injection from the collector at frequencies up to 1.46 THz , 2014 .

[23]  T. C. McGill,et al.  Oscillations up to 712 GHz in InAs/AlSb resonant‐tunneling diodes , 1991 .

[24]  Patrick Reynaert,et al.  A 0.54 THz Signal Generator in 40 nm Bulk CMOS With 22 GHz Tuning Range and Integrated Planar Antenna , 2014, IEEE Journal of Solid-State Circuits.

[25]  T. Schneider,et al.  All Active MMIC-Based Wireless Communication at 220 GHz , 2011, IEEE Transactions on Terahertz Science and Technology.

[26]  Masahiro Tsuchiya,et al.  Dependence of resonant tunneling current on well widths in AlAs/GaAs/AlAs double barrier diode structures , 1986 .

[27]  Bernd Heinemann,et al.  14.5 A 0.53THz reconfigurable source array with up to 1mW radiated power for terahertz imaging applications in 0.13μm SiGe BiCMOS , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[28]  J. P. Hirtz,et al.  The carrier mobilities in Ga0.47In0.53as grown by organo-mettalic CVD and liquid-phase epitaxy , 1981 .

[29]  Safumi Suzuki,et al.  High Output Power (∼400 µW) Oscillators at around 550 GHz Using Resonant Tunneling Diodes with Graded Emitter and Thin Barriers , 2011 .

[30]  Safumi Suzuki,et al.  Frequency increase in terahertz oscillation of resonant tunnelling diode up to 1.55 THz by reduced slot-antenna length , 2014 .

[31]  Tadao Nagatsuma,et al.  Terahertz technologies: present and future , 2011, IEICE Electron. Express.

[32]  Munkyo Seo,et al.  InP HBT IC Technology for Terahertz Frequencies: Fundamental Oscillators Up to 0.57 THz , 2011, IEEE Journal of Solid-State Circuits.