Associative classification, linguistic entity relationship extraction, and description-logic representation of biomedical knowledge applied to MEDLINE

[1]  Daniel M. Bikel,et al.  Design of a multi-lingual, parallel-processing statistical parsing engine , 2002 .

[2]  Thomas Lukasiewicz,et al.  P-SHOQ(D): A Probabilistic Extension of SHOQ(D) for Probabilistic Ontologies in the Semantic Web , 2002, JELIA.

[3]  Umberto Straccia,et al.  fuzzyDL: An expressive fuzzy description logic reasoner , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[4]  Gaurav Sharma,et al.  Text Mining through Entity-Relationship Based Information Extraction , 2007, 2007 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology - Workshops.

[5]  David Madigan,et al.  Large-Scale Bayesian Logistic Regression for Text Categorization , 2007, Technometrics.

[6]  Christopher D. Manning,et al.  Stanford typed dependencies manual , 2010 .

[7]  Christopher D. Manning,et al.  Generating Typed Dependency Parses from Phrase Structure Parses , 2006, LREC.

[8]  Razvan C. Bunescu,et al.  A Shortest Path Dependency Kernel for Relation Extraction , 2005, HLT.

[9]  Ramakrishnan Srikant,et al.  Fast algorithms for mining association rules , 1998, VLDB 1998.

[10]  Oren Etzioni,et al.  Open Information Extraction from the Web , 2007, CACM.

[11]  Anton Yuryev,et al.  Automatic extraction of gene ontology annotation and its correlation with clusters in protein networks , 2007, BMC Bioinformatics.

[12]  Jinfeng Zhang,et al.  Bayesian inference of protein-protein interactions from biological literature , 2009, Bioinform..

[13]  Philipp Cimiano,et al.  Finding the Appropriate Generalization Level for Binary Relations Extracted from the Genia Corpus , 2006 .

[14]  L. Chou Medline-based bibliometric analysis of gastroenterology journals between 2001 and 2007. , 2009, World journal of gastroenterology.

[15]  Malvina Nissim,et al.  Exploiting Context for Biomedical Entity Recognition: From Syntax to the Web , 2004, NLPBA/BioNLP.

[16]  David A. Padua,et al.  A sampling-based framework for parallel data mining , 2005, PPoPP.

[17]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[18]  Lipika Dey,et al.  Biological ontology enhancement with fuzzy relations: a text-mining framework , 2005, The 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI'05).

[19]  Razvan C. Bunescu,et al.  Subsequence Kernels for Relation Extraction , 2005, NIPS.

[20]  Charu C. Aggarwal,et al.  A Tree Projection Algorithm for Generation of Frequent Item Sets , 2001, J. Parallel Distributed Comput..

[21]  Michael Collins,et al.  Head-Driven Statistical Models for Natural Language Parsing , 2003, CL.

[22]  Aldo Gangemi,et al.  Unsupervised Learning of Semantic Relations between Concepts of a Molecular Biology Ontology , 2005, IJCAI.

[23]  Lipika Dey,et al.  An Ontology-Based Pattern Mining System for Extracting Information from Biological Texts , 2005, RSFDGrC.

[24]  Eugene Charniak,et al.  A Maximum-Entropy-Inspired Parser , 2000, ANLP.

[25]  Mingxia Gao,et al.  Extending OWL by fuzzy description logic , 2005, 17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05).

[26]  Anton Yuryev,et al.  Extracting human protein interactions from MEDLINE using a full-sentence parser , 2004, Bioinform..

[27]  Ian H. Witten,et al.  Generating Accurate Rule Sets Without Global Optimization , 1998, ICML.

[28]  Lipika Dey,et al.  Biological relation extraction and query answering from MEDLINE abstracts using ontology-based text mining , 2007, Data Knowl. Eng..