The nonparametric Fisher geometry and the chi-square process density prior

Author(s): Holbrook, Andrew; Lan, Shiwei; Streets, Jeffrey; Shahbaba, Babak | Abstract: It is well known that the Fisher information induces a Riemannian geometry on parametric families of probability density functions. Following recent work, we consider the nonparametric generalization of the Fisher geometry. The resulting nonparametric Fisher geometry is shown to be equivalent to a familiar, albeit infinite-dimensional, geometric object---the sphere. By shifting focus away from density functions and toward \emph{square-root} density functions, one may calculate theoretical quantities of interest with ease. More importantly, the sphere of square-root densities is much more computationally tractable. This insight leads to a novel Bayesian nonparametric density estimation model. We construct the $\chi^2$-process density prior by modeling the square-root density with a restricted Gaussian process prior. Inference over square-root densities is fast, and the model retains the flexibility characteristic of Bayesian nonparametric models. Finally, we formalize the relationship between spherical HMC in the infinite-dimensional limit and standard Riemannian HMC.

[1]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[2]  J. M. Sanz-Serna,et al.  Hybrid Monte Carlo on Hilbert spaces , 2011 .

[3]  Mark Moyou,et al.  The Geometry of Orthogonal-Series, Square-Root Density Estimators: Applications in Computer Vision and Model Selection , 2017 .

[4]  Sebastian Kurtek,et al.  Bayesian sensitivity analysis with the Fisher–Rao metric , 2015 .

[5]  Mitsuhiro Itoh,et al.  Geometry of Fisher Information Metric and the Barycenter Map , 2015, Entropy.

[6]  M. Hutchings,et al.  Standing crop and pattern in pure stands of Mercurialis perennis and Rubus fruticosus in mixed deciduous woodland , 1978 .

[7]  Ryan P. Adams,et al.  The Gaussian Process Density Sampler , 2008, NIPS.

[8]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[9]  Carl E. Rasmussen,et al.  In Advances in Neural Information Processing Systems , 2011 .

[10]  Junbin Gao,et al.  A Fast Algorithm to Estimate the Square Root of Probability Density Function , 2016, SGAI Conf..

[11]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[12]  K. Chung Lectures from Markov processes to Brownian motion , 1982 .

[13]  Andrew M. Stuart,et al.  Geometric MCMC for infinite-dimensional inverse problems , 2016, J. Comput. Phys..

[14]  A. Stuart,et al.  The Bayesian Approach to Inverse Problems , 2013, 1302.6989.

[15]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[16]  Anuj Srivastava,et al.  Riemannian Analysis of Probability Density Functions with Applications in Vision , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  D. Cox Some Statistical Methods Connected with Series of Events , 1955 .

[18]  B. Efron THE GEOMETRY OF EXPONENTIAL FAMILIES , 1978 .

[19]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[20]  Christian Gourieroux,et al.  Statistics and econometric models , 1995 .

[21]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[22]  Babak Shahbaba,et al.  Spherical Hamiltonian Monte Carlo for Constrained Target Distributions , 2013, ICML.

[23]  Brani Vidakovic,et al.  Estimating the square root of a density via compactly supported wavelets , 1997 .

[24]  B. Shahbaba,et al.  A Geometric View of Posterior Approximation , 2015, 1510.00861.

[25]  G. Roberts,et al.  MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.

[26]  Limin Wang,et al.  Karhunen-Loeve expansions and their applications , 2008 .

[27]  M. Girolami,et al.  Geodesic Monte Carlo on Embedded Manifolds , 2013, Scandinavian journal of statistics, theory and applications.

[28]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[29]  N. Longford A FAST SCORING ALGORITHM FOR MAXIMUM LIKELIHOOD ESTIMATION IN UNBALANCED MIXED MODELS WITH NESTED RANDOM EFFECTS , 1987 .

[30]  Anuj Srivastava,et al.  Functional and Shape Data Analysis , 2016 .

[31]  C. Antoniak Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .

[32]  Peter J. Diggle,et al.  Bivariate Cox Processes: Some Models for Bivariate Spatial Point Patterns , 1983 .

[33]  Babak Shahbaba,et al.  Split Hamiltonian Monte Carlo , 2011, Stat. Comput..

[34]  M. Escobar,et al.  Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .

[35]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[36]  H. Jeffreys An invariant form for the prior probability in estimation problems , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[37]  B. Shahbaba,et al.  Geodesic Lagrangian Monte Carlo over the space of positive definite matrices: with application to Bayesian spectral density estimation , 2016, Journal of statistical computation and simulation.

[38]  Roman Garnett,et al.  Sampling for Inference in Probabilistic Models with Fast Bayesian Quadrature , 2014, NIPS.

[39]  Brani Vidakovic,et al.  Bayesian Inference with Wavelets: Density Estimation , 1998 .

[40]  Marco A. Iglesias,et al.  Hierarchical Bayesian level set inversion , 2016, Statistics and Computing.

[41]  I. Dryden Statistical analysis on high-dimensional spheres and shape spaces , 2005, math/0508279.

[42]  A. Genz,et al.  The Supremum of Chi-Square Processes , 2014 .

[43]  L. L. Cam,et al.  Asymptotic Methods In Statistical Decision Theory , 1986 .