Lofted Catmull-Clark subdivision surfaces

One essential interpolation constraint on subdivision surfaces is curve interpolation. Subdivision surfaces through predefined meshes of curves can now be generated using either variations of existing subdivision schemes or (in our case) polygonal complexes. This paper goes one step further; given a sequence of cross sectional curves (c/sub i/), each defined by a uniform cubic B-spline control polygon (cp/sub i/), we present a technique for generating a lofted subdivision surface through these curves. The advantages of using polygonal complexes coupled with subdivision surfaces are that curves do not have to be compatible and that it is possible to locally control the cross curvature of a given cross section.

[1]  Les A. Piegl,et al.  Surface skinning revisited , 2002, The Visual Computer.

[2]  C. Woodward Skinning techniques for interactive B-spline surface interpolation , 1988 .

[3]  Ahmad H. Nasri,et al.  Designing Catmull-Clark subdivision surfaces with curve interpolation constraints , 2002, Comput. Graph..

[4]  I. Faux,et al.  Computational Geometry for Design and Manufacture , 1979 .

[5]  A. A. Ball,et al.  CONSURF. Part two: description of the algorithms , 1975, Comput. Aided Des..

[6]  C. D. Boor,et al.  Bicubic Spline Interpolation , 1962 .

[7]  W. Boehm,et al.  The insertion algorithm , 1985 .

[8]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.

[9]  Ahmad H. Nasri Constructing polygonal complexes with shape handles for curve interpolation by subdivision surfaces , 2001, Comput. Aided Des..

[10]  A. A. Ball,et al.  Part 1: Introduction of the conic lofting tile , 1993, Comput. Aided Des..

[11]  Ahmad H. Nasri,et al.  Recursive subdivision of polygonal complexes and its applications in computer-aided geometric design , 2000, Comput. Aided Geom. Des..

[12]  Henning Biermann,et al.  Piecewise smooth subdivision surfaces with normal control , 2000, SIGGRAPH.

[13]  Ahmad H. Nasri,et al.  Taxonomy of interpolation constraints on recursive subdivision curves , 2002, The Visual Computer.

[14]  J. Clark,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[15]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .