The diameter of randomly perturbed digraphs and some applications

[1]  Benny Sudakov,et al.  On smoothed analysis in dense graphs and formulas , 2006, Random Struct. Algorithms.

[2]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[3]  Omer Reingold,et al.  Undirected ST-connectivity in log-space , 2005, STOC '05.

[4]  René Beier,et al.  Typical properties of winners and losers in discrete optimization , 2004, STOC '04.

[5]  A. Frieze,et al.  The Size of the Largest Strongly Connected Component of a Random Digraph with a Given Degree Sequence , 2004, Combinatorics, Probability and Computing.

[6]  Alan M. Frieze,et al.  Adding random edges to dense graphs , 2004, Random Struct. Algorithms.

[7]  Luca Becchetti,et al.  Average case and smoothed competitive analysis of the multi-level feedback algorithm , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[8]  Kurt Mehlhorn,et al.  Smoothed Analysis of Three Combinatorial Problems , 2003, MFCS.

[9]  Tom Bohman,et al.  How many random edges make a dense graph hamiltonian? , 2003, Random Struct. Algorithms.

[10]  Shang-Hua Teng,et al.  Smoothed Analysis (Motivation and Discrete Models) , 2003, WADS.

[11]  Luca Becchetti,et al.  Smoothening Helps: A Probabilistic Analysis of the Multi-Level Feedback Algorithm , 2003 .

[12]  Uriel Feige,et al.  Heuristics for Semirandom Graph Problems , 2001, J. Comput. Syst. Sci..

[13]  Shang-Hua Teng,et al.  Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time , 2001, STOC '01.

[14]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[15]  Noga Alon,et al.  Decreasing the diameter of bounded degree graphs , 2000, J. Graph Theory.

[16]  U. Feige,et al.  Finding and certifying a large hidden clique in a semirandom graph , 2000, Random Struct. Algorithms.

[17]  S. Janson,et al.  Random Graphs: Janson/Random , 2000 .

[18]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[19]  C. R. Subramanian,et al.  Algorithms for coloring semi-random graphs , 1998 .

[20]  Dana Ron,et al.  Property Testing in Bounded Degree Graphs , 2002, STOC '97.

[21]  Heribert Vollmer,et al.  Measure One Results in Computational Complexity Theory , 1997, Advances in Algorithms, Languages, and Complexity.

[22]  Dana Ron,et al.  Property testing and its connection to learning and approximation , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[23]  Joel H. Spencer,et al.  Coloring Random and Semi-Random k-Colorable Graphs , 1995, J. Algorithms.

[24]  Uriel Feige,et al.  A Tight Lower Bound on the Cover Time for Random Walks on Graphs , 1995, Random Struct. Algorithms.

[25]  Uriel Feige,et al.  A Tight Upper Bound on the Cover Time for Random Walks on Graphs , 1995, Random Struct. Algorithms.

[26]  Noga Alon,et al.  A spectral technique for coloring random 3-colorable graphs (preliminary version) , 1994, STOC '94.

[27]  D. Welsh,et al.  A Spectral Technique for Coloring Random 3-Colorable Graphs , 1994 .

[28]  Noam Nisan,et al.  On read-once vs. multiple access to randomness in logspace , 1990, Proceedings Fifth Annual Structure in Complexity Theory Conference.

[29]  Richard M. Karp,et al.  The Transitive Closure of a Random Digraph , 1990, Random Struct. Algorithms.

[30]  Andrzej Rucinski,et al.  Random Graphs , 2018, Foundations of Data Science.

[31]  Eitan M. Gurari,et al.  Introduction to the theory of computation , 1989 .

[32]  Béla Bollobás,et al.  The Diameter of a Cycle Plus a Random Matching , 1988, SIAM J. Discret. Math..

[33]  Miklos Santha,et al.  Generating Quasi-random Sequences from Semi-random Sources , 1986, J. Comput. Syst. Sci..

[34]  Béla Bollobás,et al.  Random Graphs , 1985 .

[35]  Fan Chung Graham,et al.  Diameter bounds for altered graphs , 1984, J. Graph Theory.

[36]  Richard J. Lipton,et al.  Random walks, universal traversal sequences, and the complexity of maze problems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[37]  Neil D. Jones,et al.  Space-Bounded Reducibility among Combinatorial Problems , 1975, J. Comput. Syst. Sci..