Synthesis of Fluorescent Metallic Nanoclusters toward Biomedical Application: Recent Progress and Present Challenges

Recent advances in nanomaterials have produced a new class of fluorescent labels by biocognition molecules to fluorescent noble-metal nanoclusters such as Au and Ag. In particular, the emission wavelength of metallic nanoclusters can be tuned by changing the capping molecules, and a single light source is needed for simultaneous excitation of all different-emissive nanoclusters, which is similar to semiconductor quantum dots. In this review, we highlight the recent advances in synthesis approaches, biomolecular conjugation and its biomedical application. Fabricating the color-emitting metal nanoclusters using the template-based synthesis (i.e., dendrimer, oligonucleotide, proteins, polyelectrolyte, and polymer) and monolayer-protected nanocluster (MPC) synthesis (i.e., dihydrogen lipoic acid and mercaptoundecanoic acid) are described. High-quality nanoclusters are also more biocompatible and stable against photobleaching compared with organic dyes. These novel optical properties render the fluorescent noble-metal nanoclusters ideal fluorophores for multicolor and multiplexing applications in biomedical engineering and molecular biotechnology.

[1]  A. Mooradian,et al.  Photoluminescence of Metals , 1969 .

[2]  Wenbin Chen,et al.  Fluorescent gold nanoparticles-based fluorescence sensor for Cu2+ ions. , 2009, Chemical communications.

[3]  R. Dickson,et al.  Ag Nanocluster Formation Using a Cytosine Oligonucleotide Template. , 2007, The journal of physical chemistry. C, Nanomaterials and interfaces.

[4]  Hiroshi Yao,et al.  Magic-numbered Au(n) clusters protected by glutathione monolayers (n = 18, 21, 25, 28, 32, 39): isolation and spectroscopic characterization. , 2004, Journal of the American Chemical Society.

[5]  Robert L. Whetten,et al.  Isolation of Smaller Nanocrystal Au Molecules: Robust Quantum Effects in Optical Spectra , 1997 .

[6]  R. Whetten,et al.  Near-Infrared Luminescence from Small Gold Nanocrystals , 2000 .

[7]  Thomas Bürgi,et al.  Chiral inversion of gold nanoparticles. , 2008, Journal of the American Chemical Society.

[8]  C. Larabell,et al.  Quantum dots as cellular probes. , 2005, Annual review of biomedical engineering.

[9]  Katsuyuki Nobusada,et al.  Glutathione-protected gold clusters revisited: bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. , 2005, Journal of the American Chemical Society.

[10]  Shen,et al.  Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. , 1986, Physical review. B, Condensed matter.

[11]  Shuming Nie,et al.  Multicolor quantum dots for molecular diagnostics of cancer , 2006, Expert review of molecular diagnostics.

[12]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[13]  S. Dong,et al.  Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template. , 2008, Chemical communications.

[14]  Robert M Dickson,et al.  Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. , 2002, Journal of the American Chemical Society.

[15]  Robert L. Whetten,et al.  Isolation and Selected Properties of a 10.4 kDa Gold:Glutathione Cluster Compound , 1998 .

[16]  G. Ertl,et al.  Chemiluminescence in the Agglomeration of Metal Clusters , 1996, Science.

[17]  Y. Negishi,et al.  Visible photoluminescence from nearly monodispersed Au12 clusters protected by meso-2,3-dimercaptosuccinic acid , 2004 .

[18]  R. Tsien,et al.  The Fluorescent Toolbox for Assessing Protein Location and Function , 2006, Science.

[19]  S. Lundqvist,et al.  Photoluminescence of noble metals , 1988 .

[20]  Royce W Murray,et al.  Quantized double-layer charging of highly monodisperse metal nanoparticles. , 2002, Journal of the American Chemical Society.

[21]  R. Murray,et al.  Near-IR luminescence of monolayer-protected metal clusters. , 2005, Journal of the American Chemical Society.

[22]  T. Niidome,et al.  Artificial viruses and their application to gene delivery. Size-controlled gene coating with glycocluster nanoparticles. , 2003, Journal of the American Chemical Society.

[23]  K. Kontturi,et al.  Electrochemical resolution of 15 oxidation states for monolayer protected gold nanoparticles. , 2003, Journal of the American Chemical Society.

[24]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[25]  Stephan Link,et al.  Optical properties and ultrafast dynamics of metallic nanocrystals. , 2003, Annual review of physical chemistry.

[26]  Nai-Tzu Chen,et al.  Ligand exchanged photoluminescent gold quantum dots functionalized with leading peptides for nuclear targeting and intracellular imaging. , 2008, Chemical communications.

[27]  Shinsuke Sando,et al.  A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. , 2004, Journal of the American Chemical Society.

[28]  J. A. Reyes-Nava,et al.  Chirality in bare and passivated gold nanoclusters , 2002, physics/0203078.

[29]  H. Frey,et al.  Water‐Soluble Fluorescent Ag Nanoclusters Obtained from Multiarm Star Poly(acrylic acid) as “Molecular Hydrogel” Templates , 2007 .

[30]  Chih-Ching Huang,et al.  Synthesis of fluorescent carbohydrate-protected Au nanodots for detection of Concanavalin A and Escherichia coli. , 2009, Analytical chemistry.

[31]  Tom Vosch,et al.  Strongly emissive individual DNA-encapsulated Ag nanoclusters as single-molecule fluorophores , 2007, Proceedings of the National Academy of Sciences.

[32]  Robert C. Triulzi,et al.  Immunoasssay based on the antibody-conjugated PAMAM-dendrimer-gold quantum dot complex. , 2006, Chemical communications.

[33]  H. Bourbon,et al.  Structure of the mouse nucleolin gene. The complete sequence reveals that each RNA binding domain is encoded by two independent exons. , 1988, Journal of molecular biology.

[34]  Ron C. Hardman A Toxicologic Review of Quantum Dots: Toxicity Depends on Physicochemical and Environmental Factors , 2005, Environmental health perspectives.

[35]  C. Niemeyer REVIEW Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science , 2022 .

[36]  Jess P. Wilcoxon,et al.  Photoluminescence from nanosize gold clusters , 1998 .

[37]  Rosario Pereiro,et al.  Bioanalytics and biolabeling with semiconductor nanoparticles (quantum dots) , 2007 .

[38]  Q. Huo,et al.  Controlled functionalization of gold nanoparticles through a solid phase synthesis approach. , 2004, Chemical communications.

[39]  Zusing Yang,et al.  Synthesis of wavelength-tunable luminescent gold and gold/silver nanodots , 2009 .

[40]  Gangli Wang,et al.  NIR luminescence intensities increase linearly with proportion of polar thiolate ligands in protecting monolayers of Au38 and Au140 quantum dots. , 2006, The journal of physical chemistry. B.

[41]  E. Gwinn,et al.  Sequence‐Dependent Fluorescence of DNA‐Hosted Silver Nanoclusters , 2008 .

[42]  Robin H. A. Ras,et al.  Color tunability and electrochemiluminescence of silver nanoclusters. , 2009, Angewandte Chemie.

[43]  Eugenia Kumacheva,et al.  Photogeneration of Fluorescent Silver Nanoclusters in Polymer Microgels , 2005 .

[44]  R. Dickson,et al.  In vitro and intracellular production of peptide-encapsulated fluorescent silver nanoclusters. , 2007, Angewandte Chemie.

[45]  Marc D. Porter,et al.  Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 nm: Core and Monolayer Properties as a Function of Core Size , 1998 .

[46]  R. Dickson,et al.  Shuttle-based fluorogenic silver-cluster biolabels. , 2009, Angewandte Chemie.

[47]  Robert M Dickson,et al.  DNA-templated Ag nanocluster formation. , 2004, Journal of the American Chemical Society.

[48]  Christine M. Micheel,et al.  Electrophoretic and Structural Studies of DNA-Directed Au Nanoparticle Groupings , 2002 .

[49]  Robert L. Whetten,et al.  Optical Absorption Spectra of Nanocrystal Gold Molecules , 1997 .

[50]  R. Whetten,et al.  Giant Gold−Glutathione Cluster Compounds: Intense Optical Activity in Metal-Based Transitions , 2000 .

[51]  Pablo D. Jadzinsky,et al.  Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 Å Resolution , 2007, Science.

[52]  P. Provencio,et al.  Etching and aging effects in nanosize Au clusters investigated using high-resolution size-exclusion chromatography , 2003 .

[53]  Wolfgang J. Parak,et al.  Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. , 2009, ACS nano.

[54]  R. Dickson,et al.  Highly fluorescent, water-soluble, size-tunable gold quantum dots. , 2004, Physical review letters.

[55]  R. Murray,et al.  Visible Luminescence of Water-Soluble Monolayer-Protected Gold Clusters , 2001 .

[56]  Hiroshi Yao,et al.  Magic-Numbered Aun Clusters Protected by Glutathione Monolayers (n = 18, 21, 25, 28, 32, 39): Isolation and Spectroscopic Characterization , 2004 .

[57]  Peter W. Stephens,et al.  Nanocrystal gold molecules , 1996 .

[58]  K. O’Grady,et al.  EDITORIAL: Progress in applications of magnetic nanoparticles in biomedicine Progress in applications of magnetic nanoparticles in biomedicine , 2009 .

[59]  J. Zou,et al.  Monofunctional gold nanoparticles prepared via a noncovalent-interaction-based solid-phase modification approach. , 2006, Small.

[60]  Q. Huo,et al.  Monofunctional Group-Modified Gold Nanoparticles from Solid Phase Synthesis Approach: Solid Support and Experimental Condition Effect , 2004 .

[61]  A. Hernando,et al.  Permanent magnetism, magnetic anisotropy, and hysteresis of thiol-capped gold nanoparticles. , 2004, Physical review letters.

[62]  Wolfgang J. Parak,et al.  Electrophoretic Separation of Nanoparticles with a Discrete Number of Functional Groups , 2006 .

[63]  R. Dickson,et al.  Photoactivated fluorescence from individual silver nanoclusters. , 2001, Science.

[64]  R. Murray,et al.  Electrochemistry and optical absorbance and luminescence of molecule-like Au38 nanoparticles. , 2004, Journal of the American Chemical Society.

[65]  Justin D. Debord,et al.  The monolayer thickness dependence of quantized double-layer capacitances of monolayer-protected gold clusters. , 1999, Analytical chemistry.

[66]  Robert L. Whetten,et al.  Visible to Infrared Luminescence from a 28-Atom Gold Cluster , 2002 .

[67]  V. Rotello,et al.  Nanoparticle-templated assembly of viral protein cages. , 2006, Nano letters.

[68]  D. Mingos,et al.  Closed-shell electronic requirements for condensed clusters of the group 11 elements , 1991 .

[69]  Xiaogang Peng,et al.  Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals. , 2003, Journal of the American Chemical Society.

[70]  Jeffrey T. Petty,et al.  High Quantum Yield Blue Emission from Water‐Soluble Au8 Nanodots. , 2003 .

[71]  Vladimir P Zharov,et al.  Covalently linked Au nanoparticles to a viral vector: potential for combined photothermal and gene cancer therapy. , 2006, Nano letters.

[72]  R. Murray,et al.  Gold nanoelectrodes of varied size: transition to molecule-like charging , 1998, Science.

[73]  N. Makarava,et al.  Water-soluble hybrid nanoclusters with extra bright and photostable emissions: a new tool for biological imaging. , 2005, Biophysical journal.

[74]  Tae-Hee Lee,et al.  Single-molecule optoelectronics. , 2005, Accounts of chemical research.

[75]  Shaowei Chen,et al.  Surface Manipulation of the Electronic Energy of Subnanometer-Sized Gold Clusters: An Electrochemical and Spectroscopic Investigation , 2003 .

[76]  R. Dickson,et al.  High quantum yield blue emission from water-soluble Au8 nanodots. , 2003, Journal of the American Chemical Society.

[77]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[78]  Tom Vosch,et al.  Oligonucleotide-stabilized Ag nanocluster fluorophores. , 2008, Journal of the American Chemical Society.

[79]  Zusing Yang,et al.  Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). , 2007, Angewandte Chemie.

[80]  Wolfgang J. Parak,et al.  Synthesis and surface modification of highly fluorescent gold nanoclusters and their exploitation for cellular labeling , 2010, BiOS.

[81]  S. Nie,et al.  Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: a new route to fluorescent and water-soluble atomic clusters. , 2007, Journal of the American Chemical Society.

[82]  Walter H. Chang,et al.  Design of an amphiphilic polymer for nanoparticle coating and functionalization. , 2008, Small.

[83]  R. Weissleder,et al.  Imaging in the era of molecular oncology , 2008, Nature.

[84]  Zong-Hong Lin,et al.  Bioconjugated gold nanodots and nanoparticles for protein assays based on photoluminescence quenching. , 2008, Analytical chemistry.

[85]  J. Buttet,et al.  Optical response of Ag2, Ag3, Au2, and Au3 in argon matrices , 1993 .

[86]  R. Dickson,et al.  Live Cell Surface Labeling with Fluorescent Ag Nanocluster Conjugates † , 2008, Photochemistry and photobiology.

[87]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[88]  Jennifer S. Martinez,et al.  Nanoparticle Free Synthesis of Fluorescent Gold Nanoclusters at Physiological Temperature , 2007, MRS Online Proceedings Library.

[89]  M. Abrams,et al.  Metal compounds in therapy and diagnosis. , 1993, Science.

[90]  Mathias Brust,et al.  Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system , 1994 .

[91]  Jianping Xie,et al.  Protein-directed synthesis of highly fluorescent gold nanoclusters. , 2009, Journal of the American Chemical Society.