Noise properties of injection lasers due to reflected waves

This paper describes the theoretical investigation of the origin, qualitative, and quantitative properties of the low frequency noise appearing in the light output of the laser diode, which is strongly coupled to optical fibers. This kind of noise has caused serious problems for reliable optical communications, especially for analog-modulation systems. It is shown that there are two different phenomena which generate such noise. One of them is the double cavity state, and the other is the external light injection state. The cause of our noise considered in the double cavity state is the phase variation due to the variation of the equivalent length between the laser and the reflection point generated by mechanical vibrations. On the other hand, the cause in the external light injection state is the random generations of locking and unlocking states due to the frequency variation (or mode jumping) caused by the variation of the internal temperature of the laser diode. We conclude from our theory that an effective method to reduce such noise is to operate the laser diode at well above the threshold current. The complete elimination will be attained by use of the optical isolator inserted between the laser diode and the transmission lines.