Glass-encapsulated light harvesters: more efficient dye-sensitized solar cells by deposition of self-aligned, conformal, and self-limited silica layers.

A major loss mechanism in dye-sensitized solar cells (DSCs) is recombination at the TiO(2)/electrolyte interface. Here we report a method to reduce greatly this loss mechanism. We deposit insulating and transparent silica (SiO(2)) onto the open areas of a nanoparticulate TiO(2) surface while avoiding any deposition of SiO(2) over or under the organic dye molecules. The SiO(2) coating covers the highly convoluted surface of the TiO(2) conformally and with a uniform thickness throughout the thousands of layers of nanoparticles. DSCs incorporating these selective and self-aligned SiO(2) layers achieved a 36% increase in relative efficiency versus control uncoated cells.

[1]  Y. Kwon,et al.  Stable Dye‐Sensitized Solar Cells by Encapsulation of N719‐Sensitized TiO2 Electrodes Using Surface‐Induced Cross‐Linking Polymerization , 2012 .

[2]  G. Boschloo,et al.  Characterization of Surface Passivation by Poly(methylsiloxane) for Dye-Sensitized Solar Cells Employing the Ferrocene Redox Couple , 2010 .

[3]  Joseph T. Hupp,et al.  Surface modification of SnO2 photoelectrodes in dye-sensitized solar cells: Significant improvements in photovoltage via Al2O3 atomic layer deposition , 2010 .

[4]  Mikko Heikkilä,et al.  Suppression of Forward Electron Injection from Ru(dcbpy)2(NCS)2 to Nanocrystalline TiO2 Film As a Result of an Interfacial Al2O3 Barrier Layer Prepared with Atomic Layer Deposition , 2010 .

[5]  M. Grätzel,et al.  An efficient dye-sensitized solar cell with an organic sensitizer encapsulated in a cyclodextrin cavity. , 2009, Angewandte Chemie.

[6]  Song-Yeu Tsai,et al.  Enhanced performance of dye-sensitized solar cells by an Al2O3 charge-recombination barrier formed by low-temperature atomic layer deposition , 2009 .

[7]  Shane Ardo,et al.  Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. , 2009, Chemical Society reviews.

[8]  Thomas W. Hamann,et al.  Outer-Sphere Redox Couples as Shuttles in Dye-Sensitized Solar Cells. Performance Enhancement Based on Photoelectrode Modification via Atomic Layer Deposition , 2008 .

[9]  S. George,et al.  Rapid SiO2 Atomic Layer Deposition Using Tris(tert-pentoxy)silanol , 2008 .

[10]  J. Durrant,et al.  Catalysis of recombination and its limitation on open circuit voltage for dye sensitized photovoltaic cells using phthalocyanine dyes. , 2008, Journal of the American Chemical Society.

[11]  Michael Grätzel,et al.  Highly efficient and thermally stable organic sensitizers for solvent-free dye-sensitized solar cells. , 2008, Angewandte Chemie.

[12]  S. Haque,et al.  Saccharide Blocking Layers in Solid State Dye Sensitized Solar Cells , 2007 .

[13]  Eiji Suzuki,et al.  Alkyl-functionalized organic dyes for efficient molecular photovoltaics. , 2006, Journal of the American Chemical Society.

[14]  Aleksandra Radenovic,et al.  ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells. , 2006, The journal of physical chemistry. B.

[15]  Neil Robertson,et al.  Optimizing dyes for dye-sensitized solar cells. , 2006, Angewandte Chemie.

[16]  Stephen A. Campbell,et al.  Atomic Layer Deposition, Characterization, and Dielectric Properties of HfO2/SiO2 Nanolaminates and Comparisons with Their Homogeneous Mixtures , 2006 .

[17]  Qing Wang,et al.  Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. , 2005, The journal of physical chemistry. B.

[18]  Robert P. H. Chang,et al.  Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition , 2005 .

[19]  Peng Wang,et al.  A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells. , 2005, Journal of the American Chemical Society.

[20]  S. Campbell,et al.  Combinatorial CVD of ZrO2 or HfO2 compositional spreads with SiO2 for high κ dielectrics , 2004 .

[21]  Peng Wang,et al.  A Binary Ionic Liquid Electrolyte to Achieve ≥7% Power Conversion Efficiencies in Dye-Sensitized Solar Cells , 2004 .

[22]  Lauri Niinistö,et al.  Advanced electronic and optoelectronic materials by Atomic Layer Deposition: An overview with special emphasis on recent progress in processing of high-k dielectrics and other oxide materials , 2004 .

[23]  Joseph T. Hupp,et al.  A Porous Multilayer Dye-Based Photoelectrochemical Cell That Unexpectedly Runs in Reverse , 2004 .

[24]  S. George,et al.  Low-Temperature Al2O3 Atomic Layer Deposition , 2004 .

[25]  J. F. Conley,et al.  Pulsed deposition of silicate films , 2003 .

[26]  Emilio Palomares,et al.  Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. , 2003, Journal of the American Chemical Society.

[27]  Roy G. Gordon,et al.  Rapid Vapor Deposition of Highly Conformal Silica Nanolaminates , 2002, Science.

[28]  Esther Kim,et al.  Atomic Layer Deposition of Hafnium and Zirconium Oxides Using Metal Amide Precursors , 2002 .

[29]  Lionel R Milgrom,et al.  Molecular control of recombination dynamics in dye sensitised nanocrystalline TiO2 films. , 2002, Chemical communications.

[30]  R. Gordon,et al.  Vapor Deposition of Metal Oxides and Silicates: Possible Gate Insulators for Future Microelectronics , 2001 .

[31]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[32]  M. Ritala,et al.  Atomic layer epitaxy—a valuable tool for nanotechnology? , 1999 .

[33]  A. J. Frank,et al.  Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Intensity Modulated Photovoltage Spectroscopy , 1997 .

[34]  M. Graetzel,et al.  Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins , 1993 .

[35]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.