Visual and Nonvisual Contributions to Three-Dimensional Heading Selectivity in the Medial Superior Temporal Area

Robust perception of self-motion requires integration of visual motion signals with nonvisual cues. Neurons in the dorsal subdivision of the medial superior temporal area (MSTd) may be involved in this sensory integration, because they respond selectively to global patterns of optic flow, as well as translational motion in darkness. Using a virtual-reality system, we have characterized the three-dimensional (3D) tuning of MSTd neurons to heading directions defined by optic flow alone, inertial motion alone, and congruent combinations of the two cues. Among 255 MSTd neurons, 98% exhibited significant 3D heading tuning in response to optic flow, whereas 64% were selective for heading defined by inertial motion. Heading preferences for visual and inertial motion could be aligned but were just as frequently opposite. Moreover, heading selectivity in response to congruent visual/vestibular stimulation was typically weaker than that obtained using optic flow alone, and heading preferences under congruent stimulation were dominated by the visual input. Thus, MSTd neurons generally did not integrate visual and nonvisual cues to achieve better heading selectivity. A simple two-layer neural network, which received eye-centered visual inputs and head-centered vestibular inputs, reproduced the major features of the MSTd data. The network was trained to compute heading in a head-centered reference frame under all stimulus conditions, such that it performed a selective reference-frame transformation of visual, but not vestibular, signals. The similarity between network hidden units and MSTd neurons suggests that MSTd may be an early stage of sensory convergence involved in transforming optic flow information into a (head-centered) reference frame that facilitates integration with vestibular signals.

[1]  Ralph M. Siegel,et al.  Optic Flow Selectivity in the Anterior Superior Temporal Polysensory Area, STPa, of the Behaving Monkey , 1999, The Journal of Neuroscience.

[2]  John H. R. Maunsell,et al.  The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization , 1981, The Journal of comparative neurology.

[3]  K. Hoffmann,et al.  Linear Vestibular Self‐Motion Signals in Monkey Medial Superior Temporal Area , 1999, Annals of the New York Academy of Sciences.

[4]  R. Andersen,et al.  Mechanisms of Heading Perception in Primate Visual Cortex , 1996, Science.

[5]  Kenneth H Britten,et al.  Area MST and heading perception in macaque monkeys. , 2002, Cerebral cortex.

[6]  James A. Crowell,et al.  The perception of heading during eye movements , 1992, Nature.

[7]  S. Squatrito,et al.  Gaze field properties of eye position neurones in areas MST and 7a of the macaque monkey , 1996, Visual Neuroscience.

[8]  James A. Crowell,et al.  Estimating heading during real and simulated eye movements , 1996, Vision Research.

[9]  田中 啓治 Analysis of Local and Wide-Field Movements in the Superior Temporal Visual Areas of the Macaque Monkey , 1987 .

[10]  A. Berthoz,et al.  Visuo-vestibular interaction in the reconstruction of travelled trajectories , 2003, Experimental Brain Research.

[11]  T. Brandt,et al.  Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. , 1998, Brain : a journal of neurology.

[12]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[13]  Frank Bremmer,et al.  ã Federation of European Neuroscience Societies Heading encoding in the macaque ventral intraparietal area (VIP) , 2022 .

[14]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[15]  Constance S. Royden,et al.  Analysis of misperceived observer motion during simulated eye rotations , 1994, Vision Research.

[16]  R. Wurtz,et al.  Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. , 1991, Journal of neurophysiology.

[17]  John H. R. Maunsell,et al.  Topographic organization of the middle temporal visual area in the macaque monkey: Representational biases and the relationship to callosal connections and myeloarchitectonic boundaries , 1987, The Journal of comparative neurology.

[18]  J. Goldberg,et al.  Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. II. Directional selectivity and force-response relations. , 1976, Journal of neurophysiology.

[19]  R. Wurtz,et al.  Response of monkey MST neurons to optic flow stimuli with shifted centers of motion , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  R. Desimone,et al.  Local precision of visuotopic organization in the middle temporal area (MT) of the macaque , 2004, Experimental Brain Research.

[21]  T. Sato,et al.  Activity of smooth pursuit-related neurons in the monkey periarcuate cortex during pursuit and passive whole-body rotation. , 2000, Journal of neurophysiology.

[22]  J Duysens,et al.  Neurons in the ventral intraparietal area of awake macaque monkey closely resemble neurons in the dorsal part of the medial superior temporal area in their responses to optic flow patterns. , 1996, Journal of neurophysiology.

[23]  S. Squatrito,et al.  Encoding of Smooth Pursuit Direction and Eye Position by Neurons of Area MSTd of Macaque Monkey , 1997, The Journal of Neuroscience.

[24]  P. Thier,et al.  Responses of Visual‐Tracking Neurons from Cortical Area MST‐I to Visual, Eye and Head Motion , 1992, The European journal of neuroscience.

[25]  S. Zeki Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey , 1974, The Journal of physiology.

[26]  C. Duffy,et al.  Heading representation in MST: sensory interactions and population encoding. , 2003, Journal of neurophysiology.

[27]  Thomas Stephan,et al.  Visual-vestibular and visuovisual cortical interaction: new insights from fMRI and pet. , 2002, Annals of the New York Academy of Sciences.

[28]  P. Thier,et al.  Posterior Parietal Cortex Neurons Encode Target Motion in World-Centered Coordinates , 2004, Neuron.

[29]  A. P. Georgopoulos,et al.  Neuronal population coding of movement direction. , 1986, Science.

[30]  H. Komatsu,et al.  Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons. , 1988, Journal of neurophysiology.

[31]  R. M. Siegel,et al.  Analysis of optic flow in the monkey parietal area 7a. , 1997, Cerebral cortex.

[32]  W K Page,et al.  MST neuronal responses to heading direction during pursuit eye movements. , 1999, Journal of neurophysiology.

[33]  C. Busettini,et al.  Radial optic flow induces vergence eye movements with ultra-short latencies , 1997, Nature.

[34]  W. Abend,et al.  Response to static tilts of peripheral neurons innervating otolith organs of the squirrel monkey. , 1972, Journal of neurophysiology.

[35]  Nicholas I. Fisher,et al.  Statistical Analysis of Spherical Data. , 1987 .

[36]  L. Harris,et al.  Visual and non-visual cues in the perception of linear self motion , 2000, Experimental Brain Research.

[37]  Rüdiger Wenzel,et al.  Human Vestibular Cortex as Identified with Caloric Stimulation in Functional Magnetic Resonance Imaging , 2002, NeuroImage.

[38]  L. Vaina Complex motion perception and its deficits , 1998, Current Opinion in Neurobiology.

[39]  Muge M. Bakircioglu,et al.  Mapping visual cortex in monkeys and humans using surface-based atlases , 2001, Vision Research.

[40]  R A Andersen,et al.  Influence of gaze rotation on the visual response of primate MSTd neurons. , 1999, Journal of neurophysiology.

[41]  Gundry Aj,et al.  Thresholds of perception for periodic linear motion. , 1978 .

[42]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[43]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[44]  H Kingma,et al.  Thresholds for perception of direction of linear acceleration as a possible evaluation of the otolith function , 2005, BMC ear, nose, and throat disorders.

[45]  J. Lackner,et al.  Vestibular, proprioceptive, and haptic contributions to spatial orientation. , 2005, Annual review of psychology.

[46]  James A. Crowell,et al.  Estimating heading during eye movements , 1994, Vision Research.

[47]  C. Gross,et al.  Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[48]  K. Tanaka,et al.  Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the medial superior temporal area of the macaque monkey. , 1989, Journal of neurophysiology.

[49]  K. Hoffmann,et al.  Eye position effects in monkey cortex. I. Visual and pursuit-related activity in extrastriate areas MT and MST. , 1997, Journal of neurophysiology.

[50]  H. Rodman,et al.  Coding of visual stimulus velocity in area MT of the macaque , 1987, Vision Research.

[51]  Masao Ohmi,et al.  Heading judgments during active and passive self-motion , 2004, Experimental Brain Research.

[52]  François Klam,et al.  ã Federation of European Neuroscience Societies Visual±vestibular interactive responses in the macaque ventral intraparietal area (VIP) , 2022 .

[53]  R G Erickson,et al.  Vestibular Input to Visual‐Tracking Neurons in Area MST of Awake Rhesus Monkeys , 1992, Annals of the New York Academy of Sciences.

[54]  K. Tanaka,et al.  Analysis of object motion in the ventral part of the medial superior temporal area of the macaque visual cortex. , 1993, Journal of neurophysiology.

[55]  J. Goldberg,et al.  Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force. , 1976, Journal of neurophysiology.

[56]  H. Komatsu,et al.  Relation of cortical areas MT and MST to pursuit eye movements. III. Interaction with full-field visual stimulation. , 1988, Journal of neurophysiology.

[57]  C. Duffy MST neurons respond to optic flow and translational movement. , 1998, Journal of neurophysiology.

[58]  Dora E Angelaki,et al.  Multiple Reference Frames for Motion in the Primate Cerebellum , 2004, The Journal of Neuroscience.

[59]  Richard A Andersen,et al.  Pursuit speed compensation in cortical area MSTd. , 2002, Journal of neurophysiology.

[60]  Dora E Angelaki,et al.  Vestibular convergence patterns in vestibular nuclei neurons of alert primates. , 2002, Journal of neurophysiology.

[61]  Richard A. Andersen,et al.  Visual self-motion perception during head turns , 1998, Nature Neuroscience.

[62]  D. Robinson,et al.  A METHOD OF MEASURING EYE MOVEMENT USING A SCLERAL SEARCH COIL IN A MAGNETIC FIELD. , 1963, IEEE transactions on bio-medical engineering.

[63]  Yong Gu,et al.  Visual Neurons in the Pigeon Brain Encode the Acceleration of Stimulus Motion , 2004, The Journal of Neuroscience.

[64]  Maninder K. Kahlon,et al.  Visual Motion Analysis for Pursuit Eye Movements in Area MT of Macaque Monkeys , 1999, The Journal of Neuroscience.

[65]  Leslie G. Ungerleider,et al.  Multiple visual areas in the caudal superior temporal sulcus of the macaque , 1986, The Journal of comparative neurology.

[66]  D J Hannon,et al.  Eye movements and optical flow. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[67]  A. J. Benson,et al.  Thresholds for the detection of the direction of whole-body, linear movement in the horizontal plane. , 1986, Aviation, space, and environmental medicine.

[68]  R. Desimone,et al.  Columnar organization of directionally selective cells in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[69]  Richard A. Andersen,et al.  A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons , 1988, Nature.

[70]  Constance S. Royden,et al.  Human heading judgments in the presence of moving objects , 1996, Perception & psychophysics.

[71]  M. Ohmi Egocentric perception through interaction among many sensory systems. , 1996, Brain research. Cognitive brain research.

[72]  Tarek A. Yousry,et al.  Visual‐Vestibular and Visuovisual Cortical Interaction , 2002 .