Multi-physics optimisation of ‘brass’ instruments—a new method to include structural and acoustical interactions

A new method of designing ‘brass’ air-column instruments to include structural and acoustical interactions in the optimisation process is introduced and used to generate initial results. It is based upon a coupling between the air-column and structure when their resonant frequencies approach each other, which accentuates the lip to wall coupling effect. The degree of wall vibration and the frequencies at which it occurs can be controlled by variation of the structure’s stiffness. The method detailed in this paper enables optimisation of the solid wall thickness variation along the bore of the instrument. The acoustic optimisation of the internal profile and subsequent structural optimisation of the wall thicknesses is carried out based on acoustic and structural resonance constraints, with secondary objectives of structural integrity and weight minimisation. The intention is to be able to optimise the sound of the instrument to include the wall vibrations effect, based upon a specified target output.

[1]  A. S. Bratus Design of circular cylindrical shells of minimum weight with fixed natural oscillation frequencies , 1983 .

[2]  Neil Hopkinson,et al.  Rapid manufacturing : an industrial revolution for the digital age , 2006 .

[3]  Wilfried Kausel,et al.  A computer program for optimization of brass instruments. Part II. Applications, practical examples , 1999 .

[4]  Robert W. Pyle The effect of surface coatings upon brass‐instrument tone quality , 1981 .

[5]  Rubén Picó,et al.  Acoustic input impedance of a vibrating cylindrical tube , 2007 .

[6]  Thomas R. Moore,et al.  VIBRATIONAL MODES OF TRUMPET BELLS , 2002 .

[7]  John Backus,et al.  Effect of Wall Material on the Steady‐State Tone Quality of Woodwind Instruments , 1964 .

[8]  Malte Kob,et al.  Simulation and measurement of wall vibrations of a flue organ pipe , 1999 .

[9]  R. A. Smith,et al.  Recent work on musical acoustics , 1979 .

[10]  P. L. Hoekje,et al.  Finite‐element analysis of vibrating trombone bell , 1999 .

[11]  J. Coltman,et al.  Effect of Material on Flute Tone Quality , 1971 .

[12]  Richard Smith The effect of material in brass instruments: a review , 1986 .

[13]  Sam E. Parker Analyses of the Tones of Wooden and Metal Clarinets , 1947 .

[14]  S. Schwerman,et al.  The Physics of Musical Instruments , 1991 .

[15]  R. B. Newman,et al.  The Effect of Wall Materials on the Steady‐State Acoustic Spectrum of Flue Pipes , 1940 .

[16]  Matthias Scholz Sound generation in metal flue organ pipes: On the influence of asymmetric flue exit geometry and vibrations of the upper labium with particular emphasis on the early response. , 2006 .

[17]  Thomas R. Moore,et al.  The effects of bell vibrations on the acoustic spectrum of the trumpet , 2003 .

[18]  E. Wadbro,et al.  Topology optimization of an acoustic horn , 2006 .

[19]  Peter L. Hoekje SEA applications to wind instruments , 2003 .

[20]  J. M. Bowsher,et al.  Vibration characteristics of brass instrument bells , 1982 .

[21]  Philip Dickens,et al.  Implications on design of rapid manufacturing , 2003 .

[22]  Jean-Pierre Dalmont,et al.  Experimental investigations of wall influences on woodwind instrument sound , 1999 .

[23]  P. L. Hoekje,et al.  Internal sound field of vibrating trombone bell , 1997 .

[24]  Philippe Dépincé,et al.  User-centered design by genetic algorithms: Application to brass musical instrument optimization , 2007, Eng. Appl. Artif. Intell..

[25]  M. Turner,et al.  Design of minimum mass structures with specified natural frequencies. , 1967 .

[26]  C. J. Nederveen,et al.  Pitch and level changes in organ pipes due to wall resonances , 2004 .

[27]  John Backus,et al.  The Acoustical Foundations of Music , 1970 .

[28]  Charles Alfred Taylor,et al.  The physics of musical sounds , 1965 .

[29]  Cornelis J. Nederveen INFLUENCE OF A TOROIDAL BEND ON WIND INSTRUMENT TUNING , 1998 .

[30]  C. F. Abdy Williams The story of the organ , 1903 .

[31]  Edward Gick Richardson The Acoustics of Orchestral Instruments and of the Organ , 2007 .

[32]  Grant P. Steven,et al.  Evolutionary structural optimization for dynamic problems , 1996 .

[33]  D. J. Blaikey Acoustics in Relation to Wind Instruments , 1890 .

[34]  K. Y. Maalawi,et al.  Frequency Optimization of Conical Shells under Mass Equality Constraint , 2006 .

[35]  Arthur H. Benade Absorption Cross Section of a Pipe Organ Due to Resonant Vibration of the Pipe Walls , 1967 .

[36]  Richard Keith,et al.  The Contemporary American Organ , 1995 .

[37]  Wilfried Kausel,et al.  A computer program for optimization of brass instruments. Part I. Concept, implementation , 1999 .

[38]  Peter L. Hoekje,et al.  Brass instrument bell vibrations and coupling to air modes , 1993 .

[39]  Wilfried Kausel,et al.  A Musical Acoustician's Guide to Computational Physics : Concepts, Algorithms & Applications , 2003 .

[40]  Robert W. Pyle The effect of wall materials on the timbre of brass instruments , 1998 .

[41]  Joshua D. Knowles,et al.  M-PAES: a memetic algorithm for multiobjective optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[42]  Anna Runnemalm,et al.  Structural vibration modes of a blown open organ pipe , 1999 .

[43]  Daniel Noreland,et al.  Numerical Techniques for Acoustic Modelling and Design of Brass Wind Instruments , 2003 .

[44]  Martin Berggren,et al.  Shape optimization of an acoustic horn , 2003 .

[45]  Xue Yan,et al.  PII: 0010-4485(95)00035-6 , 2003 .

[46]  Daniel Noreland,et al.  A gradient based optimisation algorithm for the design of brass-wind instruments , 2003 .

[47]  John T. Scott,et al.  Fundamentals of musical acoustics , 1976 .

[48]  James Whitehouse,et al.  A study of the wall vibrations excited during the playing of lip-reed instruments , 2003 .

[49]  Thomas R. Moore,et al.  The effects of bell vibrations on the sound of the modern trumpet , 2005 .

[50]  Bruce A. Lawson,et al.  Acoustical characteristics of annealed French horn bell flares , 1985 .

[51]  Ramana V. Grandhi,et al.  Structural optimization with frequency constraints - A review , 1992 .

[52]  Dan Mapes-Riordan,et al.  Horn Modeling with Conical and Cylindrical Transmission'"Line Elements* , 1993 .

[53]  Anna Runnemalm Effects of material choice and tooling methods on structural modes of open organ pipes , 1997 .

[54]  Singiresu S Rao,et al.  Optimum design of stiffened conical shells with natural frequency constraints , 1980 .

[55]  D C Miller,et al.  THE INFLUENCE OF THE MATERIAL OF WIND-INSTRUMENTS ON THE TONE QUALITY. , 1909, Science.

[56]  François Gautier,et al.  VIBROACOUSTIC BEHAVIOUR OF A SIMPLIFIED MUSICAL WIND INSTRUMENT , 1998 .

[57]  Daniel Noreland A Numerical Method for Acoustic Waves in Horns , 2002 .

[58]  John Backus Wall Vibrations in Organ Pipes and Their Effect on Tone , 1965 .

[59]  James Jeans Science and Music , 1938 .

[60]  H. P. Knauss,et al.  Vibration of the Walls of a Cornet , 1941 .

[61]  Ramana V. Grandhi,et al.  Structural optimization with frequency constraints , 1988 .

[62]  Anthony Baines Woodwind instruments and their history , 1957 .

[63]  Malte Kob,et al.  Influence of wall vibrations on the transient sound of flue organ pipes. , 2010 .

[64]  J. Gilbert,et al.  Artificial buzzing lips and brass instruments: experimental results. , 1998, The Journal of the Acoustical Society of America.

[65]  Heinz Franke,et al.  Vibrations of thin-walled tubes and organ flue pipes , 1996, Other Conferences.