Using Conventional Edge Detectors and Postsmoothing for Segmentation of Spotted Microarray Images

Segmentation of spotted microarray images is important in generating gene expression data. It aims to distinguish foreground pixels from background pixels for a given spot of a microarray image. Edge detection in the image processing literature is a closely related research area, because spot boundary curves separating foregrounds from backgrounds in a microarray image can be treated as edges. However, for generating gene expression data, segmentation methods for handling spotted microarray images are required to classify each pixel as either a foreground or a background pixel; most conventional edge detectors in the image processing literature do not have this classification property, because their detected edge pixels are often scattered in the whole design space and consequently the foreground or background pixels are not defined. In this article, we propose a general postsmoothing procedure for estimating spot boundary curves from the detected edge pixels of conventional edge detectors, such that these conventional edge detectors together with the proposed postsmoothing procedure can be used for segmentation of spotted microarray images. Numerical studies show that this proposal works well in applications. Datasets and computer code are available in the online supplements.

[1]  Suchendra M. Bhandarkar,et al.  An edge detection technique using local smoothing and statistical hypothesis testing , 1996, Pattern Recognit. Lett..

[2]  P. Qiu Image processing and jump regression analysis , 2005 .

[3]  Tracy L. Bergemann,et al.  A Statistically Driven Approach for Image Segmentation and Signal Extraction in cDNA Microarrays , 2004, J. Comput. Biol..

[4]  Rolf Adams,et al.  Seeded Region Growing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Peihua Qiu,et al.  Jump Detection in Regression Surfaces Using Both First-Order and Second-Order Derivatives , 2007 .

[6]  D. Botstein,et al.  Systematic changes in gene expression patterns following adaptive evolution in yeast. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[8]  Roger E Bumgarner,et al.  Cellular Gene Expression upon Human Immunodeficiency Virus Type 1 Infection of CD4+-T-Cell Lines , 2003, Journal of Virology.

[9]  Christian Rau,et al.  Tracking a smooth fault line in a response surface , 2000 .

[10]  H.M. Wechsler,et al.  Digital image processing, 2nd ed. , 1981, Proceedings of the IEEE.

[11]  William K. Pratt,et al.  Digital image processing (2nd ed.) , 1991 .

[12]  P. Brown,et al.  Yeast microarrays for genome wide parallel genetic and gene expression analysis. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Chris A. Glasbey,et al.  Combinatorial image analysis of DNA microarray features , 2003, Bioinform..

[14]  Tomaso A. Poggio,et al.  On Edge Detection , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  B. Yandell,et al.  Jump Detection in Regression Surfaces , 1997 .

[16]  Peihua Qiu,et al.  Tracking Edges, Corners and Vertices in an Image , 2008 .

[17]  Hans Lehrach,et al.  Automated image analysis for array hybridization experiments , 2001, Bioinform..

[18]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[19]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Christine Thomas-Agnan Smoothing Periodic Curves by a Method of Regularization , 1990, SIAM J. Sci. Comput..

[21]  Y. Chen,et al.  Ratio-based decisions and the quantitative analysis of cDNA microarray images. , 1997, Journal of biomedical optics.

[22]  Likelihood-based confidence bands for fault lines in response surfaces , 2002 .

[23]  P. Qiu A Nonparametric Procedure to Detect Jumps in Regression Surfaces , 2002 .

[24]  Terence P. Speed,et al.  Comparison of Methods for Image Analysis on cDNA Microarray Data , 2002 .

[25]  Yifan Huang,et al.  To permute or not to permute , 2006, Bioinform..

[26]  Gérard G. Medioni,et al.  Detection of Intensity Changes with Subpixel Accuracy Using Laplacian-Gaussian Masks , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Jörg Rahnenführer,et al.  Unsupervised technique for robust target separation and analysis of DNA microarray spots through adaptive pixel clustering , 2002, Bioinform..

[28]  Paul Wintz,et al.  Digital image processing (2nd ed.) , 1987 .

[29]  Liang Peng,et al.  Local likelihood tracking of fault lines and boundaries , 2001 .

[30]  Peihua Qiu,et al.  Local Smoothing Image Segmentation for Spotted Microarray Images , 2007 .

[31]  E. Dubois,et al.  Digital picture processing , 1985, Proceedings of the IEEE.

[32]  Robert M. Haralick,et al.  Digital Step Edges from Zero Crossing of Second Directional Derivatives , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Peihua Qiu,et al.  Edge-preserving image denoising and estimation of discontinuous surfaces , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Jesús Angulo,et al.  Automatic analysis of DNA microarray images using mathematical morphology , 2003, Bioinform..

[35]  D. Botstein,et al.  The transcriptional program of sporulation in budding yeast. , 1998, Science.

[36]  Thomas O. Binford,et al.  On Detecting Edges , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.