Bayesian K-SVD Using Fast Variational Inference

Recent work in signal processing in general and image processing in particular deals with sparse representation related problems. Two such problems are of paramount importance: an overriding need for designing a well-suited overcomplete dictionary containing a redundant set of atoms—i.e., basis signals—and how to find a sparse representation of a given signal with respect to the chosen dictionary. Dictionary learning techniques, among which we find the popular K-singular value decomposition algorithm, tackle these problems by adapting a dictionary to a set of training data. A common drawback of such techniques is the need for parameter-tuning. In order to overcome this limitation, we propose a fully-automated Bayesian method that considers the uncertainty of the estimates and produces a sparse representation of the data without prior information on the number of non-zeros in each representation vector. We follow a Bayesian approach that uses a three-tiered hierarchical prior to enforce sparsity on the representations and develop an efficient variational inference framework that reduces computational complexity. Furthermore, we describe a greedy approach that speeds up the whole process. Finally, we present experimental results that show superior performance on two different applications with real images: denoising and inpainting.

[1]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[2]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[3]  Qin Lin,et al.  Bayesian Nonparametric Dictionary Learning for Compressed Sensing MRI , 2013, IEEE Transactions on Image Processing.

[4]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[5]  Ole Winther,et al.  Bayesian Inference for Structured Spike and Slab Priors , 2014, NIPS.

[6]  Michael B. Wakin,et al.  New Analysis of Manifold Embeddings and Signal Recovery from Compressive Measurements , 2013, ArXiv.

[7]  Michael Elad,et al.  Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .

[8]  Guillermo Sapiro,et al.  Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations , 2009, NIPS.

[9]  Michael E. Tipping,et al.  Fast Marginal Likelihood Maximisation for Sparse Bayesian Models , 2003 .

[10]  Dong Liang,et al.  Augmented Lagrangian-Based Sparse Representation Method with Dictionary Updating for Image Deblurring , 2013, SIAM J. Imaging Sci..

[11]  Aggelos K. Katsaggelos,et al.  Bayesian Blind Deconvolution with General Sparse Image Priors , 2012, ECCV.

[12]  Kjersti Engan,et al.  Method of optimal directions for frame design , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[13]  Miguel Lázaro-Gredilla,et al.  Spike and Slab Variational Inference for Multi-Task and Multiple Kernel Learning , 2011, NIPS.

[14]  Bhaskar D. Rao,et al.  Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm , 1997, IEEE Trans. Signal Process..

[15]  Edward H. Adelson,et al.  Shiftable multiscale transforms , 1992, IEEE Trans. Inf. Theory.

[16]  Michael Elad,et al.  Analysis K-SVD: A Dictionary-Learning Algorithm for the Analysis Sparse Model , 2013, IEEE Transactions on Signal Processing.

[17]  J. S. Rao,et al.  Spike and slab variable selection: Frequentist and Bayesian strategies , 2005, math/0505633.

[18]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[19]  Terrence J. Sejnowski,et al.  Learning Overcomplete Representations , 2000, Neural Computation.

[20]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[21]  Lawrence Carin,et al.  Nonparametric factor analysis with beta process priors , 2009, ICML '09.

[22]  Jörg Lücke,et al.  A truncated EM approach for spike-and-slab sparse coding , 2012, J. Mach. Learn. Res..

[23]  Michael Elad,et al.  On the Role of Sparse and Redundant Representations in Image Processing , 2010, Proceedings of the IEEE.

[24]  Guillermo Sapiro,et al.  Online dictionary learning for sparse coding , 2009, ICML '09.

[25]  Vishal Monga,et al.  Histopathological Image Classification Using Discriminative Feature-Oriented Dictionary Learning , 2015, IEEE Transactions on Medical Imaging.

[26]  David B. Dunson,et al.  Nonparametric Bayesian Dictionary Learning for Analysis of Noisy and Incomplete Images , 2012, IEEE Transactions on Image Processing.

[27]  Dong Liang,et al.  Highly Undersampled Magnetic Resonance Image Reconstruction Using Two-Level Bregman Method With Dictionary Updating , 2013, IEEE Transactions on Medical Imaging.

[28]  Joseph F. Murray,et al.  Dictionary Learning Algorithms for Sparse Representation , 2003, Neural Computation.

[29]  Baoxin Li,et al.  Discriminative K-SVD for dictionary learning in face recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[30]  T. Yen A majorization–minimization approach to variable selection using spike and slab priors , 2010, 1005.0891.

[31]  Mark A. Girolami,et al.  A Variational Method for Learning Sparse and Overcomplete Representations , 2001, Neural Computation.

[32]  Thomas S. Huang,et al.  Image super-resolution as sparse representation of raw image patches , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[33]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[34]  Yann LeCun,et al.  Learning Fast Approximations of Sparse Coding , 2010, ICML.

[35]  Zhihua Zhang,et al.  A non-convex relaxation approach to sparse dictionary learning , 2011, CVPR 2011.

[36]  Ole Winther,et al.  Bayesian Inference for Spatio-temporal Spike-and-Slab Priors , 2015, J. Mach. Learn. Res..

[37]  Zoubin Ghahramani,et al.  Infinite Sparse Factor Analysis and Infinite Independent Components Analysis , 2007, ICA.

[38]  Rémi Gribonval,et al.  Sparse and Spurious: Dictionary Learning With Noise and Outliers , 2014, IEEE Transactions on Information Theory.

[39]  Mike West,et al.  Bayesian Learning in Sparse Graphical Factor Models via Variational Mean-Field Annealing , 2010, J. Mach. Learn. Res..

[40]  Yann LeCun,et al.  Fast Approximations to Structured Sparse Coding and Applications to Object Classification , 2012, ECCV.

[41]  Min-Sung Koh,et al.  Turbo inpainting: Iterative K-SVD with a new dictionary , 2009, 2009 IEEE International Workshop on Multimedia Signal Processing.

[42]  J. Andrew Bagnell,et al.  Differential Sparse Coding , 2008 .

[43]  Michael Elad,et al.  Sparse Representation for Color Image Restoration , 2008, IEEE Transactions on Image Processing.

[44]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[45]  Zuowei Shen,et al.  Dictionary Learning for Sparse Coding: Algorithms and Convergence Analysis , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Richard G. Baraniuk,et al.  Random Projections of Smooth Manifolds , 2009, Found. Comput. Math..

[47]  Wei Dai,et al.  Analysis SimCO Algorithms for Sparse Analysis Model Based Dictionary Learning , 2016, IEEE Transactions on Signal Processing.

[48]  Guillermo Sapiro,et al.  Classification and clustering via dictionary learning with structured incoherence and shared features , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[49]  Mark D. Plumbley,et al.  Learning Incoherent Dictionaries for Sparse Approximation Using Iterative Projections and Rotations , 2013, IEEE Transactions on Signal Processing.

[50]  Lawrence Carin,et al.  Online Bayesian dictionary learning for large datasets , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[51]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[52]  Aggelos K. Katsaggelos,et al.  Bayesian Compressive Sensing Using Laplace Priors , 2010, IEEE Transactions on Image Processing.

[53]  Kjersti Engan,et al.  Family of iterative LS-based dictionary learning algorithms, ILS-DLA, for sparse signal representation , 2007, Digit. Signal Process..

[54]  Trac D. Tran,et al.  Iterative Convex Refinement for Sparse Recovery , 2015, IEEE Signal Processing Letters.

[55]  Kjersti Engan,et al.  Recursive Least Squares Dictionary Learning Algorithm , 2010, IEEE Transactions on Signal Processing.

[56]  Aggelos K. Katsaggelos,et al.  Automated Recovery of Compressedly Observed Sparse Signals From Smooth Background , 2014, IEEE Signal Processing Letters.

[57]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[58]  Lawrence Carin,et al.  Bayesian Dictionary Learning with Gaussian Processes and Sigmoid Belief Networks , 2016, IJCAI.

[59]  Christian Jutten,et al.  Learning Overcomplete Dictionaries Based on Atom-by-Atom Updating , 2014, IEEE Transactions on Signal Processing.

[60]  Michael Elad,et al.  Dictionaries for Sparse Representation Modeling , 2010, Proceedings of the IEEE.