Spectral selectivity in infrared thermal detection

Advances in nanomechanical structures and thermal-emission devices have provided fresh perspectives for the development of infrared thermal detectors. Joseph Talghader and colleagues at the University of Minnesota, USA, review fundamental and technological progress in the field from the perspective of spectrally selective detection, which is important for applications ranging from chemical detection and target recognition to studies in cavity quantum electrodynamics. Placing emphasis on devices operating at non-cryogenic temperatures, Talghader et al. discuss basic and practical aspects of detectors based on both natural and artificial materials. They round off their discussion by looking at current trends in material science and imaging technology to speculate about the future directions of the field.

[1]  Jay N. Zemel,et al.  Organ pipe radiant modes of periodic micromachined silicon surfaces , 1986, Nature.

[2]  James G. Fleming,et al.  Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal , 2003 .

[3]  L. N. Hadley,et al.  Reflection and Transmission Interference Filters Part I. Theory , 1947 .

[4]  W. Emerson,et al.  Electromagnetic wave absorbers and anechoic chambers through the years , 1973 .

[5]  George D. Skidmore,et al.  Recent development of ultra small pixel uncooled focal plane arrays at DRS , 2007, SPIE Defense + Commercial Sensing.

[6]  P. Fellgett,et al.  On the ultimate sensitivity and practical performance of radiation detectors. , 1949, Journal of the Optical Society of America.

[7]  Charles M. Hanson Uncooled IR detector performance limits and barriers , 2000, Defense, Security, and Sensing.

[8]  William L. Schaich,et al.  Measurement of the resonant lengths of infrared dipole antennas , 2000 .

[9]  J. Castracane,et al.  Amorphous silicon two-color microbolometer for uncooled IR detection , 2006, IEEE Sensors Journal.

[10]  G. T. Ruck,et al.  Radar Cross Section Handbook Vol. 1 , 1970 .

[11]  Xianfeng Zhang,et al.  Multiwalled carbon nanotubes for stray light suppression in space flight instruments , 2010, NanoScience + Engineering.

[12]  S. E. Schwarz,et al.  Antenna‐coupled infrared detectors , 1977 .

[13]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[14]  Shunichi Kodama,et al.  Ultra-black nickel-phosphorus alloy optical absorber , 1989, 6th IEEE Conference Record., Instrumentation and Measurement Technology Conference.

[15]  Levente J Klein,et al.  Sub-wavelength bolometers: uncooled platinum wires as infrared sensors. , 2011, Optics express.

[16]  Thomas Maier,et al.  Multispectral microbolometers for the midinfrared. , 2010, Optics letters.

[17]  M. Roukes Yoctocalorimetry: phonon counting in nanostructures , 1998, cond-mat/9811256.

[18]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[19]  Wavelength tuning of an antenna-coupled infrared microbolometer , 2004 .

[20]  R. Carminati,et al.  Coherent emission of light by thermal sources , 2002, Nature.

[21]  Willie J Padilla,et al.  Infrared spatial and frequency selective metamaterial with near-unity absorbance. , 2010, Physical review letters.

[22]  George D. Skidmore,et al.  Overview of DRS uncooled VOx infrared detector development , 2011 .

[23]  Thomas Maier,et al.  Wavelength-tunable microbolometers with metamaterial absorbers. , 2009, Optics letters.

[24]  W B Lewis,et al.  Fluctuations in streams of thermal radiation , 1947 .

[25]  M. Fox Quantum Optics: An Introduction , 2006 .

[26]  R. Fano Theoretical limitations on the broadband matching of arbitrary impedances , 1950 .

[27]  H. B. Briggs,et al.  Absorption of Infrared Light by Free Carriers in Germanium , 1953 .

[28]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[29]  J. G. Fleming,et al.  All-metallic three-dimensional photonic crystals with a large infrared bandgap , 2002, Nature.

[30]  D. Werner,et al.  Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating. , 2011, ACS nano.

[31]  A. Dillon,et al.  Single-wall carbon nanotube coating on a pyroelectric detector. , 2005, Applied optics.

[32]  Joseph J Talghader,et al.  Midwave thermal infrared detection using semiconductor selective absorption. , 2010, Optics express.

[33]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[34]  M. Golay,et al.  The theoretical and practical sensitivity of the pneumatic infra-red detector. , 1949, The Review of scientific instruments.

[35]  Thomas G. Kyle,et al.  Atmospheric Transmission, Emission and Scattering , 1991 .

[36]  Lijie Ci,et al.  Experimental observation of an extremely dark material made by a low-density nanotube array. , 2008, Nano letters.

[37]  C. Kittel Introduction to solid state physics , 1954 .

[38]  John Theodore Houghton,et al.  Infra-red Physics , 1967 .

[39]  J. M. Worlock,et al.  Measurement of the quantum of thermal conductance , 2000, Nature.

[40]  Naoki Oda,et al.  New thermally isolated pixel structure for high-resolution (640×480) uncooled infrared focal plane arrays , 2006 .

[41]  P. Einziger,et al.  Optimized microbolometers with higher sensitivity for visible and infrared imaging. , 2006, Optics express.

[42]  R. A. Logan,et al.  Properties of Heavily Doped n‐Type Germanium , 1961 .

[43]  L. Hadley,et al.  Reflection and transmission interference filters. , 1947, Journal of the Optical Society of America.

[44]  P. Yeh,et al.  Optical Waves in Layered Media , 1988 .

[45]  Robert W. Boyd Photon bunching and the photon-noise-limited performance of infrared detectors , 1982 .

[46]  M. Roukes,et al.  Noise processes in nanomechanical resonators , 2002 .

[47]  Willie J Padilla,et al.  Taming the blackbody with infrared metamaterials as selective thermal emitters. , 2011, Physical review letters.

[48]  Satoshi Yasuda,et al.  A black body absorber from vertically aligned single-walled carbon nanotubes , 2009, Proceedings of the National Academy of Sciences.

[49]  H. Baltes PLANCK'S RADIATION LAW FOR FINITE CAVITIES AND RELATED PROBLEMS , 1976 .

[50]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[51]  R. Jones,et al.  The ultimate sensitivity of radiation detectors. , 1947, Journal of the Optical Society of America.

[52]  T. Gabrielson Mechanical-thermal noise in micromachined acoustic and vibration sensors , 1993 .

[53]  P. Aigrain,et al.  Optical Absorption of Arsenic-Doped Degenerate Germanium , 1962 .

[54]  Eric M. Wormser,et al.  Properties of Thermistor Infrared Detectors , 1953 .

[55]  J. Talghader,et al.  Coupled absorption filters for thermal detectors. , 2006, Optics letters.

[56]  Yidong Chong,et al.  Time-Reversed Lasing and Interferometric Control of Absorption , 2011, Science.

[57]  Louis Harris,et al.  The Transmittance and Reflectance of Gold Black Deposits in the 15- to 100-Micron Region , 1961 .

[58]  Hermann Sandmaier,et al.  Absorbing layers for thermal infrared detectors , 1992 .

[59]  John F. Brady,et al.  Amorphous silicon based large format uncooled FPA microbolometer technology , 2008, SPIE Defense + Commercial Sensing.

[60]  K. Rozanov Ultimate thickness to bandwidth ratio of radar absorbers , 2000 .

[61]  George P. Eppeldauer,et al.  Gold-black coatings for freestanding pyroelectric detectors , 2003 .

[62]  W. Spitzer,et al.  Determination of Optical Constants and Carrier Effective Mass of Semiconductors , 1957 .

[63]  K. Jóźwikowski,et al.  Enhanced numerical analysis of three-color HgCdTe detectors , 2007, SPIE Defense + Commercial Sensing.

[64]  Dean P. Neikirk,et al.  Design of infrared wavelength-selective microbolometers using planar multimode detectors , 2004 .

[65]  J.C. Campbell,et al.  High-speed polysilicon resonant-cavity photodiode with SiO/sub 2/-Si Bragg reflectors , 1997, IEEE Photonics Technology Letters.

[66]  F. Wooten,et al.  Optical Properties of Solids , 1972 .

[67]  C. Kittel,et al.  Thermal Physics, 2nd ed. , 1998 .

[68]  Irina Puscasu,et al.  Photonic crystal enhanced narrow-band infrared emitters , 2002 .

[69]  Edward J. Wollack,et al.  Hemispherical reflectance and emittance properties of carbon nanotubes coatings at infrared wavelengths , 2011, Optical Engineering + Applications.

[70]  C. Haas Infrared Absorption in Heavily Doped n -Type Germanium , 1962 .

[71]  L. J. Cox,et al.  Infrared reflection properties of five types of black coating for radiometric detectors , 1985 .