iScope: personalized multi-modality image search for mobile devices

Mobile devices are becoming a primary medium for personal information gathering, management, and sharing. Managing personal image data on mobile platforms is a difficult problem due to large data set size, content diversity, heterogeneous individual usage patterns, and resource constraints. This article presents a user-centric system, called iScope, for personal image management and sharing on mobile devices. iScope uses multi-modality clustering of both content and context information for efficient image management and search, and online learning techniques for predicting images of interest. It also supports distributed content-based search among networked devices while maintaining the same intuitive interface, enabling efficient information sharing among people. We have implemented iScope and conducted in-field experiments using networked Nokia N810 portable Internet tablets. Energy efficiency was a primary design focus during the design and implementation of the iScope search algorithms. Experimental results indicate that iScope improves search time and search energy by 4.1X and 3.8X on average, relative to browsing.

[1]  Alan F. Smeaton,et al.  Using text search for personal photo collections with the MediAssist system , 2007, SAC '07.

[2]  Alan F. Smeaton,et al.  Mobile access to personal digital photograph archives , 2005, Mobile HCI.

[3]  Jason Flinn,et al.  quFiles: a unifying abstraction for mobile data management , 2008, HotMobile '08.

[4]  Mukesh Singhal,et al.  Security in wireless sensor networks , 2008, Wirel. Commun. Mob. Comput..

[5]  Khai N. Truong,et al.  An examination of daily information needs and sharing opportunities , 2008, CSCW.

[6]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[7]  Ari Juels,et al.  RFID security and privacy: a research survey , 2006, IEEE Journal on Selected Areas in Communications.

[8]  Yong Yu,et al.  Optimizing web search using social annotations , 2007, WWW '07.

[9]  Wolfgang Nejdl,et al.  Search strategies for scientific collaboration networks , 2005, P2PIR '05.

[10]  Xing Xie,et al.  Photo-to-Search: Using Camera Phones to Inquire of the Surrounding World , 2006, 7th International Conference on Mobile Data Management (MDM'06).

[11]  Moncef Gabbouj,et al.  Content-based image retrieval on mobile devices , 2005, IS&T/SPIE Electronic Imaging.

[12]  William G. Griswold,et al.  Experiences with place lab: an open source toolkit for location-aware computing , 2006, ICSE '06.

[13]  David Salesin,et al.  Fast multiresolution image querying , 1995, SIGGRAPH.

[14]  David K. Y. Yau,et al.  On the effectiveness of movement prediction to reduce energy consumption in wireless communication , 2003, IEEE Transactions on Mobile Computing.

[15]  Giovanni Maria Sacco Research Results in Dynamic Taxonomy and Faceted Search Systems , 2007, 18th International Workshop on Database and Expert Systems Applications (DEXA 2007).

[16]  Mukesh Dalal Personalized social & real-time collaborative search , 2007, WWW '07.

[17]  Charles Guggenheim,et al.  An American Museum , 1954 .

[18]  Jean-Yves Le Boudec,et al.  Power Law and Exponential Decay of Intercontact Times between Mobile Devices , 2010, IEEE Trans. Mob. Comput..

[19]  Marvin Theimer,et al.  The Bayou Architecture: Support for Data Sharing Among Mobile Users , 1994, 1994 First Workshop on Mobile Computing Systems and Applications.

[20]  Yacov Yacobi,et al.  Privacy and Authentication on a Portable Communications System , 1993, IEEE J. Sel. Areas Commun..

[21]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[22]  Wei Liu,et al.  Relevance aggregation projections for image retrieval , 2008, CIVR '08.

[23]  Konrad Tollmar,et al.  Searching the Web with mobile images for location recognition , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[24]  Nitya Narasimhan,et al.  Using location for personalized POI recommendations in mobile environments , 2006, International Symposium on Applications and the Internet (SAINT'06).

[25]  Yunyoung Nam,et al.  mCLOVER: mobile content-based leaf image retrieval system , 2005, MULTIMEDIA '05.

[26]  Beth E. Kolko,et al.  Communication as information-seeking: the case for mobile social software for developing regions , 2007, WWW '07.

[27]  Marvin Theimer,et al.  Managing update conflicts in Bayou, a weakly connected replicated storage system , 1995, SOSP.

[28]  Chan Young Kim,et al.  VISCORS: a visual-content recommender for the mobile Web , 2004, IEEE Intelligent Systems.

[29]  Romit Roy Choudhury,et al.  Micro-Blog: sharing and querying content through mobile phones and social participation , 2008, MobiSys '08.

[30]  Jiejun Xu,et al.  Multimodal photo annotation and retrieval on a mobile phone , 2008, MIR '08.

[31]  Steve Hodges,et al.  Neuropsychological Rehabilitation , 2013 .

[32]  Roy Want,et al.  Musicology: Bringing Personal Music into Shared Spaces , 2007, 2007 Fourth Annual International Conference on Mobile and Ubiquitous Systems: Networking & Services (MobiQuitous).

[33]  Rong Jin,et al.  A unified log-based relevance feedback scheme for image retrieval , 2006, IEEE Transactions on Knowledge and Data Engineering.

[34]  Kai Li,et al.  Image similarity search with compact data structures , 2004, CIKM '04.

[35]  Wei-Ying Ma,et al.  Hierarchical clustering of WWW image search results using visual, textual and link information , 2004, MULTIMEDIA '04.

[36]  Liang-Tien Chia,et al.  Image retrieval ++—web image retrieval with an enhanced multi-modality ontology , 2008, Multimedia Tools and Applications.

[37]  R. Manmatha,et al.  Automatic image annotation and retrieval using cross-media relevance models , 2003, SIGIR.

[38]  Faith M. Heikkila Encryption: Security Considerations for Portable Media Devices , 2007, IEEE Security & Privacy.

[39]  Yunyoung Nam,et al.  CLOVER: A Mobile Content-Based Leaf Image Retrieval System , 2005, ICADL.

[40]  Georgia Koutrika,et al.  Can social bookmarking improve web search? , 2008, WSDM '08.

[41]  Yilei Shao,et al.  Segank: A Distributed Mobile Storage System , 2004, FAST.

[42]  Amit Kumar Das,et al.  Image retrieval based on indexing and relevance feedback , 2007, Pattern Recognit. Lett..

[43]  Yung-Hsiang Lu,et al.  Energy conservation by adaptive feature loading for mobile content-based image retrieval , 2008, Proceeding of the 13th international symposium on Low power electronics and design (ISLPED '08).

[44]  Ye Wang,et al.  Power-efficient streaming for mobile terminals , 2005, NOSSDAV '05.

[45]  Jason Flinn,et al.  EnsemBlue: integrating distributed storage and consumer electronics , 2006, OSDI '06.

[46]  Desney S. Tan,et al.  CueFlik: interactive concept learning in image search , 2008, CHI.

[47]  Farshad Fotouhi,et al.  Semantic feedback for interactive image retrieval , 2005, MULTIMEDIA '05.

[48]  Mirco Musolesi,et al.  Sensing meets mobile social networks: the design, implementation and evaluation of the CenceMe application , 2008, SenSys '08.

[49]  Ricardo J. Dias,et al.  Geographic image retrieval in mobile guides , 2007, GIR '07.

[50]  Alan F. Smeaton,et al.  Using bluetooth and GPS metadata to measure event similarity in SenseCam Images , 2007 .

[51]  Konrad Tollmar,et al.  A picture is worth a thousand keywords: image-based object search on a mobile platform , 2005, CHI Extended Abstracts.

[52]  Roy Want,et al.  Face-to-face media sharing using wireless mobile devices , 2005, Seventh IEEE International Symposium on Multimedia (ISM'05).

[53]  Marc A. Smith,et al.  AURA: A mobile platform for object and location annotation , 2003 .