Sentinel-2 for Mapping Iron Absorption Feature Parameters

Iron is an indicator for soil fertility and the usability of an area for cultivating crops. Remote sensing is the only suitable tool for surveying large areas at a high temporal and spatial interval, yet a relative high spectral resolution is needed for mapping iron contents with reflectance data. Sentinel-2 has several bands that cover the 0.9 μm iron absorption feature, while space-borne sensors traditionally used for geologic remote sensing, like ASTER and Landsat, had only one band in this feature. In this paper, we introduce a curve-fitting technique for Sentinel-2 that approximates the iron absorption feature at a hyperspectral resolution. We test our technique on library spectra of different iron bearing minerals and we apply it to a Sentinel-2 image synthesized from an airborne hyperspectral dataset. Our method finds the wavelength position of maximum absorption and absolute absorption depth for minerals Beryl, Bronzite, Goethite, Jarosite and Hematite. Sentinel-2 offers information on the 0.9 μm absorption feature that until now was reserved for hyperspectral instruments. Being a satellite mission, this information comes at a lower spatial resolution than airborne hyperspectral data, but with a large spatial coverage and frequent revisit time.

[1]  Tsehaie Woldai,et al.  Multi- and hyperspectral geologic remote sensing: A review , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[2]  Michael E. Schaepman,et al.  Experimental Evaluation of Sentinel-2 Spectral Response Functions for NDVI Time-Series Continuity , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Lawrence C. Rowan,et al.  Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals , 2010 .

[4]  M. Abrams The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products for the high spatial resolution imager on NASA's Terra platform , 2000 .

[5]  J. Salisbury,et al.  Midinfrared spectral features of rocks and their powders , 2002 .

[6]  Fred A. Kruse,et al.  Mineral Mapping Using Simulated Worldview-3 Short-Wave-Infrared Imagery , 2013, Remote. Sens..

[7]  S. J. Sutley,et al.  USGS Digital Spectral Library splib06a , 2007 .

[8]  John W. Salisbury,et al.  Availability of a library of infrared (2.1-25.0 microns) mineral spectra , 1989 .

[9]  M. E. Andrews Deller Facies discrimination in laterites using Landsat Thematic Mapper, ASTER and ALI data—examples from Eritrea and Arabia , 2006 .

[10]  M. Podwysocki,et al.  Geology, geochronology, fluid inclusions, and isotope geochemistry of the Rodalquilar gold alunite deposit, Spain , 1995 .

[11]  Lu Wang,et al.  Extraction mechanism of alteration zones using ASTER imagery , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[12]  M. S. Salama,et al.  A hydro-optical model for deriving water quality variables from satellite images HydroSat : a case study of the Nile River demonstrating the future Sentinel-2 capabilities , 2012 .

[13]  Daniel Schläpfer,et al.  Geo-atmospheric processing of airborne imaging spectrometry data. Part 1: Parametric orthorectification , 2002 .

[14]  C. Daughtry,et al.  Cellulose absorption index (CAI) to quantify mixed soil-plant litter scenes , 2003 .

[15]  L. Alonso,et al.  A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems , 2013 .

[16]  Freek D. van der Meer,et al.  Indicator kriging applied to absorption band analysis in hyperspectral imagery: A case study from the Rodalquilar epithermal gold mining area, SE Spain , 2006 .

[17]  Harald van der Werff,et al.  Rotation-Variant Template Matching for Supervised Hyperspectral Boundary Detection , 2007, IEEE Geoscience and Remote Sensing Letters.

[18]  Michael E. Schaepman,et al.  Determining iron content in Mediterranean soils in partly vegetated areas, using spectral reflectance and imaging spectroscopy , 2007, Int. J. Appl. Earth Obs. Geoinformation.

[19]  R. Richter,et al.  Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: Atmospheric/topographic correction , 2002 .

[20]  Simon J. Hook,et al.  Simulated Aster data for geologic studies , 1995, IEEE Trans. Geosci. Remote. Sens..

[21]  Thomas Cudahy,et al.  A simple quadratic method of absorption feature wavelength estimation in continuum removed spectra , 2012 .

[22]  Gary R. Watmough,et al.  Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation , 2013 .

[23]  Alfred Stein,et al.  Deriving Optimal Exploration Target Zones on Mineral Prospectivity Maps , 2009 .

[24]  P. Levelt,et al.  ESA's sentinel missions in support of Earth system science , 2012 .

[25]  G. Hunt SPECTRAL SIGNATURES OF PARTICULATE MINERALS IN THE VISIBLE AND NEAR INFRARED , 1977 .

[26]  F. Meer Analysis of spectral absorption features in hyperspectral imagery , 2004 .

[27]  Jan G. P. W. Clevers,et al.  Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3 , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[28]  C. Atzberger,et al.  Spatially constrained inversion of radiative transfer models for improved LAI mapping from future Sentinel-2 imagery , 2012 .

[29]  Matthias Drusch,et al.  Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services , 2012 .

[30]  M. Podwysocki,et al.  Mineralized and unmineralized calderas in Spain; Part II, evolution of the Rodalquilar caldera complex and associated gold-alunite deposits , 1990 .

[31]  Wolfram Mauser,et al.  Optimal Exploitation of the Sentinel-2 Spectral Capabilities for Crop Leaf Area Index Mapping , 2012, Remote. Sens..

[32]  G. D’Urso,et al.  Experimental assessment of the Sentinel-2 band setting for RTM-based LAI retrieval of sugar beet and maize , 2009 .

[33]  F. Meer,et al.  Use of HyMap imaging spectrometer data to map mineralogy in the Rodalquilar caldera, southeast Spain , 2009 .

[34]  Hermann Kaufmann,et al.  Spaceborne Mine Waste Mineralogy Monitoring in South Africa, Applications for Modern Push-Broom Missions: Hyperion/OLI and EnMAP/Sentinel-2 , 2014, Remote. Sens..

[35]  B. Koetz,et al.  Capability of the Sentinel 2 mission for tropical coral reef mapping and coral bleaching detection , 2012 .

[36]  Yasushi Yamaguchi,et al.  Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) , 1998, IEEE Trans. Geosci. Remote. Sens..

[37]  Harald van der Werff,et al.  Potential of ESA's Sentinel-2 for geological applications , 2014 .

[38]  A. Goetz,et al.  Geologic remote sensing. , 1981, Science.

[39]  Stuart Marsh,et al.  Mapping the wavelength position of deepest absorption features to explore mineral diversity in hyperspectral images , 2014 .

[40]  Luis Alonso,et al.  Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3 , 2012 .