Assessing the Bone-Forming Potential of Pericytes.

[1]  A. James,et al.  Comparison of skeletal and soft tissue pericytes identifies CXCR4+ bone forming mural cells in human tissues. , 2020, Bone research.

[2]  A. James,et al.  Perivascular Mesenchymal Progenitors for Bone Regeneration , 2019, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[3]  Min Lee,et al.  Relative contributions of adipose-resident CD146+ pericytes and CD34+ adventitial progenitor cells in bone tissue engineering , 2019, npj Regenerative Medicine.

[4]  A. James,et al.  Pericytes for Therapeutic Bone Repair. , 2018, Advances in experimental medicine and biology.

[5]  C. C. West,et al.  Pericytes for the treatment of orthopedic conditions. , 2017, Pharmacology & therapeutics.

[6]  D. Hay,et al.  Prospective purification of perivascular presumptive mesenchymal stem cells from human adipose tissue: process optimization and cell population metrics across a large cohort of diverse demographics , 2016, Stem Cell Research & Therapy.

[7]  A. Simpson,et al.  Adipose derived pericytes rescue fractures from a failure of healing – non-union , 2016, Scientific Reports.

[8]  Le Chang,et al.  Human Perivascular Stem Cell‐Based Bone Graft Substitute Induces Rat Spinal Fusion , 2014, Stem cells translational medicine.

[9]  A. Nguyen,et al.  Natural history of mesenchymal stem cells, from vessel walls to culture vessels , 2013, Cellular and Molecular Life Sciences.

[10]  Mihaela Crisan,et al.  Identification of perivascular mesenchymal stromal/stem cells by flow cytometry , 2013, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[11]  Bruno Péault,et al.  Explorer Human Perivascular Stem Cells Show Enhanced Osteogenesis and Vasculogenesis with Nel-Like Molecule I Protein , 2007 .

[12]  J. Jansen,et al.  Evaluation of bone regeneration using the rat critical size calvarial defect , 2012, Nature Protocols.

[13]  M. Corselli,et al.  The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells. , 2012, Stem cells and development.

[14]  Daniel T. Montoro,et al.  Dura Mater Stimulates Human Adipose‐Derived Stromal Cells to Undergo Bone Formation in Mouse Calvarial Defects , 2011, Stem cells.

[15]  S. Badylak,et al.  A perivascular origin for mesenchymal stem cells in multiple human organs. , 2008, Cell stem cell.

[16]  G. Invernici,et al.  Human fetal aorta contains vascular progenitor cells capable of inducing vasculogenesis, angiogenesis, and myogenesis in vitro and in a murine model of peripheral ischemia. , 2007, The American journal of pathology.

[17]  E. Parati,et al.  The postnatal rat aorta contains pericyte progenitor cells that form spheroidal colonies in suspension culture. , 2005, American journal of physiology. Cell physiology.

[18]  M. Zago,et al.  Mesenchymal stem cells can be obtained from the human saphena vein. , 2005, Experimental cell research.

[19]  A. Canfield,et al.  Angiogenesis and pericytes in the initiation of ectopic calcification. , 2005, Circulation research.

[20]  A. Canfield,et al.  Chondrogenic and Adipogenic Potential of Microvascular Pericytes , 2004, Circulation.

[21]  A. Canfield,et al.  Gene expression during vascular pericyte differentiation. , 1999, Critical reviews in eukaryotic gene expression.