Length scaling of carbon nanotube transistors.

[1]  Luigi Colombo,et al.  Contact resistance in few and multilayer graphene devices , 2010 .

[2]  Zhihong Chen,et al.  Can carbon nanotube transistors be scaled without performance degradation? , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[3]  H. Wong,et al.  Wafer-Scale Growth and Transfer of Aligned Single-Walled Carbon Nanotubes , 2009, IEEE Transactions on Nanotechnology.

[4]  Q. Fu,et al.  Electrical transport measurements of the side-contacts and embedded-end-contacts of platinum leads on the same single-walled carbon nanotube , 2009, Nanotechnology.

[5]  David B. Janes,et al.  Toward surround gates on vertical single-walled carbon nanotube devices , 2009 .

[6]  C. Rutherglen,et al.  Wafer scale synthesis of dense aligned arrays of single-walled carbon nanotubes , 2008 .

[7]  J. Knoch,et al.  Tunneling phenomena in carbon nanotube field‐effect transistors , 2008 .

[8]  Pornsak Srisungsitthisunti,et al.  Measurement of metal/carbon nanotube contact resistance by adjusting contact length using laser ablation , 2008, Nanotechnology.

[9]  P. Avouris,et al.  Externally Assembled Gate-All-Around Carbon Nanotube Field-Effect Transistor , 2008, IEEE Electron Device Letters.

[10]  G. Finkelstein,et al.  Four-probe measurements of carbon nanotubes with narrow metal contacts , 2007, 0709.2498.

[11]  S. Kishimoto,et al.  Evidence of Edge Conduction at Nanotube/Metal Contact in Carbon Nanotube Devices , 2007 .

[12]  James Hone,et al.  Scaling of resistance and electron mean free path of single-walled carbon nanotubes. , 2007, Physical review letters.

[13]  R. Lake,et al.  Performance Metrics of a 5 nm, Planar, Top Gate, Carbon Nanotube on Insulator (COI) Transistor , 2007, IEEE Transactions on Nanotechnology.

[14]  F. Léonard,et al.  Properties of short channel ballistic carbon nanotube transistors with ohmic contacts , 2006, Nanotechnology.

[15]  G. Cuniberti,et al.  Contact dependence of carrier injection in carbon nanotubes: an ab initio study. , 2005, Physical review letters.

[16]  P. Avouris,et al.  High-performance dual-gate carbon nanotube FETs with 40-nm gate length , 2005, IEEE Electron Device Letters.

[17]  Dieter K. Schroder,et al.  Semiconductor Material and Device Characterization: Schroder/Semiconductor Material and Device Characterization, Third Edition , 2005 .

[18]  Phaedon Avouris,et al.  The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. , 2005, Nano letters.

[19]  M. Lundstrom,et al.  Role of phonon scattering in carbon nanotube field-effect transistors , 2005 .

[20]  W. Hoenlein,et al.  Sub-20 nm short channel carbon nanotube transistors. , 2004, Nano letters.

[21]  M. Lundstrom,et al.  Self-Aligned Ballistic Molecular Transistors and Electrically Parallel Nanotube Arrays , 2004, cond-mat/0406494.

[22]  L. C. Castro,et al.  Electrostatics of partially gated carbon nanotube FETs , 2004, IEEE Transactions on Nanotechnology.

[23]  S. Datta Quantum Transport: Atom to Transistor , 2004 .

[24]  Stefan Heinze,et al.  Unexpected scaling of the performance of carbon nanotube Schottky-barrier transistors , 2003 .

[25]  H. Dai,et al.  Ballistic Transport in Metallic Nanotubes with Reliable Pd Ohmic Contacts , 2003, cond-mat/0309044.

[26]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[27]  Mark S. Lundstrom,et al.  A numerical study of scaling issues for Schottky-barrier carbon nanotube transistors , 2003, IEEE Transactions on Electron Devices.

[28]  K. Gamo,et al.  Contact resistance of multiwall carbon nanotubes , 2003 .

[29]  Mark S. Lundstrom,et al.  High-κ dielectrics for advanced carbon-nanotube transistors and logic gates , 2002 .

[30]  R Martel,et al.  Carbon nanotubes as schottky barrier transistors. , 2002, Physical review letters.

[31]  D. Schroder Semiconductor Material and Device Characterization , 1990 .

[32]  H. Dai,et al.  High-kappa dielectrics for advanced carbon-nanotube transistors and logic gates. , 2002, Nature materials.