Evolutionary feature selection to estimate forest stand variables using LiDAR
暂无分享,去创建一个
José Cristóbal Riquelme Santos | Jorge García-Gutiérrez | Eduardo González-Ferreiro | Rafael M. Navarro-Cerrillo | David Miranda | Ulises Dieguez-Aranda | R. Navarro-Cerrillo | E. González-Ferreiro | D. Miranda | Jorge García-Gutiérrez | U. Diéguez-Aranda
[1] Clara Tattoni,et al. Can LiDAR data improve bird habitat suitability models , 2012 .
[2] R. Gonzalez. Applied Multivariate Statistics for the Social Sciences , 2003 .
[3] A. Kozak,et al. Does cross validation provide additional information in the evaluation of regression models , 2003 .
[4] Lin Li,et al. Hyperspectral retrieval of phycocyanin in potable water sources using genetic algorithm-partial least squares (GA-PLS) modeling , 2012, Int. J. Appl. Earth Obs. Geoinformation.
[5] David E. Goldberg,et al. Genetic Algorithms in Search Optimization and Machine Learning , 1988 .
[6] Yong Pang,et al. Characterizing forest canopy structure with lidar composite metrics and machine learning , 2011 .
[7] Philip K. Hopke,et al. Variable selection in classification of environmental soil samples for partial least square and neural network models , 2001 .
[8] A. W. van der Vaart,et al. Uniform Central Limit Theorems , 2001 .
[9] Richard A. Fournier,et al. An architectural model of trees to estimate forest structural attributes using terrestrial LiDAR , 2011, Environ. Model. Softw..
[10] G. F. Hughes,et al. On the mean accuracy of statistical pattern recognizers , 1968, IEEE Trans. Inf. Theory.
[11] Eduardo González-Ferreiro,et al. Assessing the attributes of high-density Eucalyptus globulus stands using airborne laser scanner data , 2011 .
[12] H. Levene. Robust tests for equality of variances , 1961 .
[13] F. M. Danson,et al. Multispectral and LiDAR data fusion for fuel type mapping using Support Vector Machine and decision rules , 2011 .
[14] S. Shapiro,et al. An Analysis of Variance Test for Normality (Complete Samples) , 1965 .
[15] S. G. Tesfamichael,et al. Investigating the impact of discrete-return lidar point density on estimations of mean and dominant plot-level tree height in Eucalyptus grandis plantations , 2010 .
[16] Pawel Lewicki,et al. Statistics : methods and applications : a comprehensive reference for science, industry, and data mining , 2006 .
[17] B. Koch,et al. Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: application of multiple optical/LiDAR-derived predictors , 2010 .
[18] R. Fildes. Conditioning Diagnostics: Collinearity and Weak Data in Regression , 1993 .
[19] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[20] Gang Chen,et al. Article in Press G Model International Journal of Applied Earth Observation and Geoinformation a Geobia Framework to Estimate Forest Parameters from Lidar Transects, Quickbird Imagery and Machine Learning: a Case Study in Quebec, Canada , 2022 .
[21] F. M. Danson,et al. Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data , 2010 .
[22] Jungho Im,et al. Forest biomass estimation from airborne LiDAR data using machine learning approaches , 2012 .
[23] H. Lilliefors. On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown , 1967 .
[24] Eduardo González-Ferreiro,et al. Estimation of stand variables in Pinus radiata D. Don plantations using different LiDAR pulse densities , 2012 .
[25] Janez Demsar,et al. Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..
[26] John B. Bradford,et al. Hierarchical Bayesian spatial models for predicting multiple forest variables using waveform LiDAR, hyperspectral imagery, and large inventory datasets , 2013, Int. J. Appl. Earth Obs. Geoinformation.
[27] Daniel Peña Sánchez de Rivera. Regresión y diseño de experimentos , 2002 .
[28] Samia Boukir,et al. Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests , 2011 .
[29] Robert S. Leiken,et al. A User’s Guide , 2011 .
[30] Fabian Ewald Fassnacht,et al. Forest structure modeling with combined airborne hyperspectral and LiDAR data , 2012 .
[31] Anikó Ekárt,et al. Genetic algorithms in computer aided design , 2003, Comput. Aided Des..
[32] Bengt J Allen,et al. Statistics: Concepts and Applications for Science.ByDavid LeBlanc.Sudbury (Massachusetts): Jones and Bartlett Publishers. $89.95 (two‐volume set). xvii + 382 p; ill.; index. ISBN: 0–7637–4699–1. 2004.Workbook to AccompanyStatistics: Concepts and Applications for Science.ByDavid LeBlanc.Sudbury (Mass , 2004 .
[33] Robert P Freckleton,et al. Why do we still use stepwise modelling in ecology and behaviour? , 2006, The Journal of animal ecology.
[34] K. Kraus,et al. Determination of terrain models in wooded areas with airborne laser scanner data , 1998 .
[35] R. H. Myers. Classical and modern regression with applications , 1986 .
[36] Michele Dalponte,et al. The role of ground reference data collection in the prediction of stem volume with LiDAR data in mountain areas , 2011 .
[37] N. Pfeifer,et al. Correction of laser scanning intensity data: Data and model-driven approaches , 2007 .
[38] W. R. Buckland,et al. Contributions to Probability and Statistics , 1960 .
[39] Uwe Soergel,et al. Relevance assessment of full-waveform lidar data for urban area classification , 2011 .
[40] David A. Belsley,et al. Conditioning Diagnostics: Collinearity and Weak Data in Regression , 1991 .
[41] Guoqing Sun,et al. Forest biomass mapping from lidar and radar synergies , 2011 .
[42] Florian Siegert,et al. Above ground biomass estimation across forest types at different degradation levels in Central Kalimantan using LiDAR data , 2012, Int. J. Appl. Earth Obs. Geoinformation.
[43] Marco Zaffalon,et al. Credible classification for environmental problems , 2005, Environ. Model. Softw..
[44] Gary R. Weckman,et al. Modeling microalgal abundance with artificial neural networks: Demonstration of a heuristic 'Grey-Box' to deconvolve and quantify environmental influences , 2012, Environ. Model. Softw..
[45] Michele Dalponte,et al. Airborne laser scanning of forest resources: An overview of research in Italy as a commentary case study , 2013, Int. J. Appl. Earth Obs. Geoinformation.
[46] Bruce Ratner,et al. Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data , 2011 .
[47] Nobuya Mizoue,et al. Effects of training for inexperienced surveyors on data quality of tree diameter and height measurements , 2010 .
[48] Francisco Herrera,et al. A study on the use of statistical tests for experimentation with neural networks: Analysis of parametric test conditions and non-parametric tests , 2007, Expert Syst. Appl..
[49] John H. Holland,et al. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .
[50] Douglas M. Hawkins,et al. The Problem of Overfitting , 2004, J. Chem. Inf. Model..
[51] T. Noland,et al. Classification of tree species based on structural features derived from high density LiDAR data , 2013 .
[52] Nicholas C. Coops,et al. Simulation study for finding optimal lidar acquisition parameters for forest height retrieval , 2005 .
[53] Francisco Herrera,et al. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power , 2010, Inf. Sci..