Novel size and surface oxide effects in silicon nanowires as lithium battery anodes.

With its high specific capacity, silicon is a promising anode material for high-energy lithium-ion batteries, but volume expansion and fracture during lithium reaction have prevented implementation. Si nanostructures have shown resistance to fracture during cycling, but the critical effects of nanostructure size and native surface oxide on volume expansion and cycling performance are not understood. Here, we use an ex situ transmission electron microscopy technique to observe the same Si nanowires before and after lithiation and have discovered the impacts of size and surface oxide on volume expansion. For nanowires with native SiO(2), the surface oxide can suppress the volume expansion during lithiation for nanowires with diameters <∼50 nm. Finite element modeling shows that the oxide layer can induce compressive hydrostatic stress that could act to limit the extent of lithiation. The understanding developed herein of how volume expansion and extent of lithiation can depend on nanomaterial structure is important for the improvement of Si-based anodes.

[1]  Yi Cui,et al.  Size-dependent fracture of Si nanowire battery anodes , 2011 .

[2]  Brandon R. Long,et al.  Strain Anisotropies and Self‐Limiting Capacities in Single‐Crystalline 3D Silicon Microstructures: Models for High Energy Density Lithium‐Ion Battery Anodes , 2011 .

[3]  Yang Liu,et al.  Anisotropic swelling and fracture of silicon nanowires during lithiation. , 2011, Nano letters.

[4]  Yi Cui,et al.  Anomalous shape changes of silicon nanopillars by electrochemical lithiation. , 2011, Nano letters.

[5]  John P. Sullivan,et al.  Ultrafast electrochemical lithiation of individual Si nanowire anodes. , 2011, Nano letters.

[6]  Venkat Srinivasan,et al.  In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation , 2010, 1108.0647.

[7]  M. Verbrugge,et al.  Modeling diffusion-induced stress in nanowire electrode structures , 2010 .

[8]  Kurt Maute,et al.  Stress generation in silicon particles during lithium insertion , 2010 .

[9]  G. Yushin,et al.  Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space. , 2010, Journal of the American Chemical Society.

[10]  Lin Gu,et al.  Reversible Storage of Lithium in Silver‐Coated Three‐Dimensional Macroporous Silicon , 2010, Advanced materials.

[11]  Tanmay K. Bhandakkar,et al.  Cohesive modeling of crack nucleation under diffusion induced stresses in a thin strip: Implications on the critical size for flaw tolerant battery electrodes , 2010 .

[12]  Zhen Zhou,et al.  Core double-shell Si@SiO2@C nanocomposites as anode materials for Li-ion batteries. , 2010, Chemical communications.

[13]  J. Rogers,et al.  Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. , 2010, Nano letters.

[14]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[15]  Jaephil Cho,et al.  A critical size of silicon nano-anodes for lithium rechargeable batteries. , 2010, Angewandte Chemie.

[16]  Dunwei Wang,et al.  Si/TiSi2 Heteronanostructures as high-capacity anode material for li ion batteries. , 2010, Nano letters.

[17]  Yong‐Mook Kang,et al.  Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery , 2010 .

[18]  Min Gyu Kim,et al.  Silicon nanotube battery anodes. , 2009, Nano letters.

[19]  Vincent Chevrier,et al.  First Principles Model of Amorphous Silicon Lithiation , 2009 .

[20]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[21]  Mark W. Verbrugge,et al.  Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation , 2009 .

[22]  Yi Cui,et al.  Surface Chemistry and Morphology of the Solid Electrolyte Interphase on Silicon Nanowire Lithium-ion Battery Anodes , 2009 .

[23]  Yi Cui,et al.  Structural and electrochemical study of the reaction of lithium with silicon nanowires , 2009 .

[24]  Ilias Belharouak,et al.  High-energy cathode material for long-life and safe lithium batteries. , 2009, Nature materials.

[25]  Rangeet Bhattacharyya,et al.  Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. , 2009, Journal of the American Chemical Society.

[26]  Candace K. Chan,et al.  Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. , 2009, Nano letters.

[27]  Qian Sun,et al.  Lithium electrochemistry of SiO2 thin film electrode for lithium-ion batteries , 2008 .

[28]  M. Stanley Whittingham,et al.  Materials Challenges Facing Electrical Energy Storage , 2008 .

[29]  R. Schlögl,et al.  Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. , 2008, Angewandte Chemie.

[30]  M. Armand,et al.  Building better batteries , 2008, Nature.

[31]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[32]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .

[33]  Gengfeng Zheng,et al.  Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species , 2006, Nature Protocols.

[34]  P. Bruce,et al.  Rechargeable LI2O2 electrode for lithium batteries. , 2006, Journal of the American Chemical Society.

[35]  Mariko Miyachi,et al.  Analysis of SiO Anodes for Lithium-Ion Batteries , 2005 .

[36]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[37]  C. M. Lepienski,et al.  Residual stress determination on lithium disilicate glass-ceramic by nanoindentation , 2004 .

[38]  T. Fukunaga,et al.  Structural Analysis of Pure and Electrochemically Lithiated SiO Using Neutron Elastic Scattering , 2004 .

[39]  T. D. Hatchard,et al.  In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon , 2004 .

[40]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[41]  T. D. Hatchard,et al.  Reaction of Li with Alloy Thin Films Studied by In Situ AFM , 2003 .

[42]  R. Huggins,et al.  The formation and properties of amorphous silicon as negative electrode reactant in lithium systems , 2003 .

[43]  Young-Il Jang,et al.  Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage , 2003 .

[44]  S. T. Lee,et al.  Small-Diameter Silicon Nanowire Surfaces , 2003, Science.

[45]  Kevin W. Eberman,et al.  Colossal Reversible Volume Changes in Lithium Alloys , 2001 .

[46]  Liquan Chen,et al.  The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature , 2000 .

[47]  William D. Nix,et al.  Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems , 2000 .

[48]  Robert A. Huggins,et al.  Lithium alloy negative electrodes , 1999 .

[49]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[50]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .