Noncovalent immobilization of electrocatalysts on carbon electrodes for fuel production.

We show that molecular catalysts for fuel-forming reactions can be immobilized on graphitic carbon electrode surfaces via noncovalent interactions. A pyrene-appended bipyridine ligand (P) serves as the linker between each complex and the surface. Immobilization of a rhodium proton-reduction catalyst, [Cp*Rh(P)Cl]Cl (1), and a rhenium CO2-reduction catalyst, Re(P)(CO)3Cl (2), afford electrocatalytically active assemblies. X-ray photoelectron spectroscopy and electrochemistry confirm catalyst immobilization. Reduction of 1 in the presence of p-toluenesulfonic acid results in catalytic H2 production, while reduction of 2 in the presence of CO2 results in catalytic CO production.

[1]  I. Sharp,et al.  Photofunctional construct that interfaces molecular cobalt-based catalysts for H2 production to a visible-light-absorbing semiconductor. , 2013, Journal of the American Chemical Society.

[2]  William R. Dichtel,et al.  Improving the binding characteristics of tripodal compounds on single layer graphene. , 2013, ACS nano.

[3]  J. Heath,et al.  Catalysis of dioxygen reduction by Thermus thermophilus strain HB27 laccase on ketjen black electrodes. , 2013, The journal of physical chemistry. B.

[4]  Victor S Batista,et al.  Light-driven water oxidation for solar fuels. , 2012, Coordination chemistry reviews.

[5]  R. Hamers,et al.  Covalent attachment of catalyst molecules to conductive diamond: CO2 reduction using "smart" electrodes. , 2012, Journal of the American Chemical Society.

[6]  William R. Dichtel,et al.  Multivalent binding motifs for the noncovalent functionalization of graphene. , 2011, Journal of the American Chemical Society.

[7]  Michael Holzinger,et al.  Tris(bispyrene-bipyridine)iron(II): a supramolecular bridge for the biofunctionalization of carbon nanotubes via π-stacking and pyrene/β-cyclodextrin host-guest interactions. , 2011, Chemistry.

[8]  James D. Blakemore,et al.  Distinguishing homogeneous from heterogeneous catalysis in electrode-driven water oxidation with molecular iridium complexes. , 2011, Journal of the American Chemical Society.

[9]  P. D. Tran,et al.  Noncovalent modification of carbon nanotubes with pyrene-functionalized nickel complexes: carbon monoxide tolerant catalysts for hydrogen evolution and uptake. , 2011, Angewandte Chemie.

[10]  C. Kubiak,et al.  Re(bipy-tBu)(CO)3Cl-improved catalytic activity for reduction of carbon dioxide: IR-spectroelectrochemical and mechanistic studies. , 2010, Inorganic chemistry.

[11]  Harry B Gray,et al.  Powering the planet with solar fuel. , 2009, Nature chemistry.

[12]  Francis D'Souza,et al.  Donor−Acceptor Nanohybrids of Zinc Naphthalocyanine or Zinc Porphyrin Noncovalently Linked to Single-Wall Carbon Nanotubes for Photoinduced Electron Transfer , 2007 .

[13]  K. Kano,et al.  High Current Density Bioelectrolysis of D-Fructose at Fructose Dehydrogenase-adsorbed and Ketjen Black-modified Electrodes without a Mediator , 2007 .

[14]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[15]  Andrew K. Udit,et al.  Reduction of dioxygen catalyzed by pyrene-wired heme domain cytochrome P450 BM3 electrodes. , 2004, Journal of the American Chemical Society.

[16]  B. Brunschwig,et al.  Involvement of a binuclear species with the Re-C(O)O-Re moiety in CO2 reduction catalyzed by tricarbonyl rhenium(I) complexes with diimine ligands: strikingly slow formation of the Re-Re and Re-C(O)O-Re species from Re(dmb)(CO)3S (dmb = 4,4'-dimethyl-2,2'-bipyridine, S = solvent). , 2003, Journal of the American Chemical Society.

[17]  W Smith,et al.  The role of fuel cells in energy storage , 2000 .

[18]  Anthony Harriman,et al.  Intramolecular Triplet Energy Transfer in Pyrene–Metal Polypyridine Dyads: A Strategy for Extending the Triplet Lifetime of the Metal Complex , 1999 .

[19]  W. Kaim,et al.  Electron transfer and chloride ligand dissociation in complexes [(C5Me5)ClM(bpy)]+/[(C5Me5)M(bpy)]n (M=Co, Rh, Ir;n = 2+, +, 0, −): A combined electrochemical and spectroscopic investigation , 1996 .

[20]  M. Grätzel,et al.  Elektrochemische und pulsradiolytische Reduktion von (Pentamethylcyclopentadienyl)(polypyridyl)rhodium‐Komplexen , 1989 .

[21]  U. Kölle,et al.  Organometallic Rhodium(III) Complexes as Catalysts for the Photoreduction of Protons to Hydrogen on Colloidal TiO2 , 1987 .

[22]  Raymond Ziessel,et al.  Photochemical and Electrochemical Reduction of Carbon Dioxide to Carbon Monoxide Mediated by (2,2′‐Bipyridine)tricarbonylchlororhenium(I) and Related Complexes as Homogeneous Catalysts , 1986 .

[23]  B. P. Sullivan,et al.  Kinetics and mechanism of CO2 insertion into a metal-hydride bond. A large solvent effect and an inverse kinetic isotope effect , 1986 .

[24]  H. Gray,et al.  Catalysis of the reduction of dioxygen at graphite electrodes coated with fungal laccase A , 1984 .

[25]  C. Koval,et al.  Electrode catalysis of the four-electron reduction of oxygen to water by dicobalt face-to-face porphyrins , 1980 .

[26]  D. Morse,et al.  Nature of the lowest excited state in tricarbonylchloro-1,10-phenanthrolinerhenium(I) and related complexes , 1974 .

[27]  R. Murray,et al.  Electrocatalytic reduction of CO2 at a chemically modified electrode , 1985 .

[28]  William J. Vining,et al.  One- and two-electron pathways in the electrocatalytic reduction of CO2 by fac-Re(bpy)(CO)3Cl (bpy = 2,2′-bipyridine) , 1985 .

[29]  J. Lehn,et al.  Electrocatalytic reduction of carbon dioxide mediated by Re(bipy)(CO)3Cl (bipy = 2,2′-bipyridine) , 1984 .

[30]  J. Lehn,et al.  Efficient photochemical reduction of CO2 to CO by visible light irradiation of systems containing Re(bipy)(CO)3X or Ru(bipy)32+–Co2+ combinations as homogeneous catalysts , 1983 .

[31]  G. Wilkinson,et al.  291. Carbonyl halides of manganese and some related compounds , 1959 .