A Bayesian Approach to Predict Solubility Parameters
暂无分享,去创建一个
[1] M. Muir. Physical Chemistry , 1888, Nature.
[2] J. W.,et al. The Journal of Physical Chemistry , 1900, Nature.
[3] J. Perdew,et al. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.
[4] A. Becke,et al. Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.
[5] W. Goddard,et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .
[6] A. Klamt,et al. COSMO : a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient , 1993 .
[7] Steve Plimpton,et al. Fast parallel algorithms for short-range molecular dynamics , 1993 .
[8] Ernst Anders,et al. Optimization and application of lithium parameters for PM3 , 1993, J. Comput. Chem..
[9] F. Lombardo,et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings , 1997 .
[10] Peter York,et al. The use of solubility parameters in pharmaceutical dosage form design , 1997 .
[11] P. Avontuur,et al. Solubility parameter and oral absorption. , 1999, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.
[12] The modified extended Hansen method to determine partial solubility parameters of drugs containing a single hydrogen bonding group and their sodium derivatives: benzoic acid/Na and ibuprofen/Na. , 2000, International journal of pharmaceutics.
[13] Thomas de Quincey. [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.
[14] P. Augustijns,et al. Determination of partial solubility parameters of five benzodiazepines in individual solvents. , 2001, International journal of pharmaceutics.
[15] P. Ruelle,et al. Significance of Partial and Total Cohesion Parameters of Pharmaceutical Solids Determined from Dissolution Calorimetric Measurements , 1991, Pharmaceutical Research.
[16] The basic COSMO-RS , 2005 .
[17] A. Maiti,et al. Nanotube–polymer composites: insights from Flory–Huggins theory and mesoscale simulations , 2005 .
[18] P. Cummings,et al. Fluid phase equilibria , 2005 .
[19] F. Weigend,et al. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.
[20] Yu Zhu,et al. Macromolecular Chemistry and Physics , 2006 .
[21] Y. A. Liu,et al. Sigma-Profile Database for Using COSMO-Based Thermodynamic Methods , 2006 .
[22] Stefan Grimme,et al. Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..
[23] T. Frauenheim,et al. DFTB+, a sparse matrix-based implementation of the DFTB method. , 2007, The journal of physical chemistry. A.
[24] C. Hansen. Solubility Parameters — An Introduction , 2007 .
[25] C. Hansen,et al. Hansen Solubility Parameters : A User's Handbook, Second Edition , 2007 .
[26] Jan W. Gooch,et al. Encyclopedic dictionary of polymers , 2007 .
[27] Jie Xu,et al. Application of QSPR to Binary Polymer/Solvent Mixtures: Prediction of Flory-Huggins Parameters , 2008 .
[28] Robert C. Glen,et al. Solubility Challenge: Can You Predict Solubilities of 32 Molecules Using a Database of 100 Reliable Measurements? , 2008, J. Chem. Inf. Model..
[29] J. Coleman,et al. Multicomponent solubility parameters for single-walled carbon nanotube-solvent mixtures. , 2009, ACS nano.
[30] R. Segalman,et al. Block Copolymers for Organic Optoelectronics , 2009 .
[31] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[32] Gang Li,et al. For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.
[33] David Rogers,et al. Extended-Connectivity Fingerprints , 2010, J. Chem. Inf. Model..
[34] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[35] Steven Abbott,et al. Determination of Solubility Parameters for Organic Semiconductor Formulations , 2011 .
[36] A. Hexemer,et al. Polymer Crystallization of Partially Miscible Polythiophene/Fullerene Mixtures Controls Morphology , 2011 .
[37] Thuc‐Quyen Nguyen,et al. A Systematic Approach to Solvent Selection Based on Cohesive Energy Densities in a Molecular Bulk Heterojunction System , 2011 .
[38] G. Járvás,et al. Estimation of Hansen solubility parameters using multivariate nonlinear QSPR modeling with COSMO scr , 2011 .
[39] S. Velaga,et al. Hansen solubility parameter as a tool to predict cocrystal formation. , 2011, International journal of pharmaceutics.
[40] 隆弘 梅津. Hansen Solubility Parameters による化学物質保護衣の選定 , 2012 .
[41] James J. P. Stewart,et al. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters , 2012, Journal of Molecular Modeling.
[42] Steven Abbott,et al. Determination of the P3HT:PCBM solubility parameters via a binary solvent gradient method: Impact of solubility on the photovoltaic performance , 2012 .
[43] Thuc‐Quyen Nguyen,et al. Molecular solubility and hansen solubility parameters for the analysis of phase separation in bulk heterojunctions , 2012 .
[44] Frank Neese,et al. The ORCA program system , 2012 .
[45] J. Coleman,et al. Generalizing solubility parameter theory to apply to one‐ and two‐dimensional solutes and to incorporate dipolar interactions , 2013 .
[46] E. Lucas,et al. Determining hildebrand solubility parameter by ultraviolet spectroscopy and microcalorimetry , 2013 .
[47] Xiaojing Zhou,et al. The role of miscibility in polymer:fullerene nanoparticulate organic photovoltaic devices , 2013 .
[48] Daniel T. W. Toolan,et al. Determination of Solvent–Polymer and Polymer–Polymer Flory–Huggins Interaction Parameters for Poly(3-hexylthiophene) via Solvent Vapor Swelling , 2013 .
[49] L. Servant,et al. Guiding the Selection of Processing Additives for Increasing the Efficiency of Bulk Heterojunction Polymeric Solar Cells , 2014 .
[50] Christoph J. Brabec,et al. Solubility Based Identification of Green Solvents for Small Molecule Organic Solar Cells , 2014 .
[51] J. Brédas,et al. Influence of Molecular Shape on Solid-State Packing in Disordered PC61BM and PC71BM Fullerenes. , 2014, The journal of physical chemistry letters.
[52] Tong Zhang,et al. Learning Nonlinear Functions Using Regularized Greedy Forest , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[53] Johan Ulander,et al. Computational Prediction of Drug Solubility in Fasted Simulated and Aspirated Human Intestinal Fluid , 2014, Pharmaceutical Research.
[54] R. J. Kline,et al. In Situ Characterization of Polymer–Fullerene Bilayer Stability , 2015 .
[55] R. Dauskardt,et al. Molecular-Scale Understanding of Cohesion and Fracture in P3HT:Fullerene Blends. , 2015, ACS applied materials & interfaces.
[56] John B. O. Mitchell,et al. A review of methods for the calculation of solution free energies and the modelling of systems in solution. , 2015, Physical chemistry chemical physics : PCCP.
[57] C. Brabec,et al. Classification of additives for organic photovoltaic devices. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.
[58] G. Járvás,et al. Combined Computational Approach Based on Density Functional Theory and Artificial Neural Networks for Predicting The Solubility Parameters of Fullerenes. , 2016, Journal of Physical Chemistry B.
[59] Gang Fu,et al. PubChem Substance and Compound databases , 2015, Nucleic Acids Res..
[60] S. Murdan,et al. Application of Hansen Solubility Parameters to predict drug-nail interactions, which can assist the design of nail medicines. , 2016, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.
[61] Michael C. Heiber,et al. Small is Powerful: Recent Progress in Solution‐Processed Small Molecule Solar Cells , 2017 .
[62] Christoph J. Brabec,et al. Abnormal strong burn-in degradation of highly efficient polymer solar cells caused by spinodal donor-acceptor demixing , 2017, Nature Communications.
[63] Johannes Textor,et al. Complete Graphical Characterization and Construction of Adjustment Sets in Markov Equivalence Classes of Ancestral Graphs , 2016, J. Mach. Learn. Res..
[64] Matti Hoch,et al. Advanced Drug Delivery Reviews , 2017 .
[65] Christoph J. Brabec,et al. Introducing a New Potential Figure of Merit for Evaluating Microstructure Stability in Photovoltaic Polymer-Fullerene Blends , 2017 .
[66] C. Brabec,et al. Suppression of Thermally Induced Fullerene Aggregation in Polyfullerene-Based Multiacceptor Organic Solar Cells. , 2017, ACS applied materials & interfaces.
[67] Alán Aspuru-Guzik,et al. MultiDK: A Multiple Descriptor Multiple Kernel Approach for Molecular Discovery and Its Application to Organic Flow Battery Electrolytes , 2017, J. Chem. Inf. Model..
[68] C. Brabec,et al. Understanding the correlation and balance between the miscibility and optoelectronic properties of polymer–fullerene solar cells , 2017 .
[69] Michael J. Keiser,et al. A simple representation of three-dimensional molecular structure , 2017, bioRxiv.
[70] D. Agbaba,et al. Modeling of Hansen's solubility parameters of aripiprazole, ziprasidone, and their impurities: A nonparametric comparison of models for prediction of drug absorption sites , 2018 .
[71] A. Avdeef. Cocrystal Solubility Product Prediction Using an in combo Model and Simulations to Improve Design of Experiments , 2018, Pharmaceutical Research.
[72] Alán Aspuru-Guzik,et al. ChemOS: Orchestrating autonomous experimentation , 2018, Science Robotics.
[73] Alán Aspuru-Guzik,et al. Accelerating the discovery of materials for clean energy in the era of smart automation , 2018, Nature Reviews Materials.
[74] Long Ye,et al. Miscibility–Function Relations in Organic Solar Cells: Significance of Optimal Miscibility in Relation to Percolation , 2018 .
[75] Chem. , 2020, Catalysis from A to Z.