Paracoccidioides Genomes Reflect High Levels of Species Divergence and Little Interspecific Gene Flow

Paracoccidioides is the causal agent of a systemic mycosis in Latin America. Most of the inference of the evolutionary history of Paracoccidioides has used only a few molecular markers. ABSTRACT The fungus Paracoccidioides is a prevalent human pathogen endemic to South America. The genus is composed of five species. In this report, we use 37 whole-genome sequences to study the allocation of genetic variation in Paracoccidioides. We tested three genome-wide predictions of advanced speciation, namely, that all species should be reciprocally monophyletic, that species pairs should be highly differentiated along the whole genome, and that there should be low rates of interspecific gene exchange. We find support for these three hypotheses. Species pairs with older divergences show no evidence of gene exchange, while more recently diverged species pairs show evidence of modest rates of introgression. Our results indicate that as divergence progresses, species boundaries become less porous among Paracoccidioides species. Our results suggest that species in Paracoccidioides are at different stages along the divergence continuum. IMPORTANCE Paracoccidioides is the causal agent of a systemic mycosis in Latin America. Most of the inference of the evolutionary history of Paracoccidioides has used only a few molecular markers. In this report, we evaluate the extent of genome divergence among Paracoccidioides species and study the possibility of interspecific gene exchange. We find that all species are highly differentiated. We also find that the amount of gene flow between species is low and in some cases is even completely absent in spite of geographic overlap. Our study constitutes a systematic effort to identify species boundaries in fungal pathogens and to determine the extent of gene exchange among fungal species.

[1]  Christina A. Cuomo,et al.  Genomic diversity of the human pathogen Paracoccidioides across the South American continent. , 2020, Fungal genetics and biology : FG & B.

[2]  Leonie C. Moyle,et al.  Assessing biological factors affecting postspeciation introgression , 2020, Evolution letters.

[3]  D. R. Matute,et al.  Fungal species boundaries in the genomics era. , 2019, Fungal genetics and biology : FG & B.

[4]  Christopher C. Kyriazis,et al.  Strongly deleterious mutations are a primary determinant of extinction risk due to inbreeding depression , 2019, bioRxiv.

[5]  Milan Malinsky,et al.  Dsuite - fast D-statistics and related admixture evidence from VCF files , 2019, bioRxiv.

[6]  T. Bhattacharjee,et al.  Rapid identification of Paracoccidioides lutzii and P. Brasiliensis using Fourier Transform Infrared spectroscopy , 2019, Journal of Molecular Structure.

[7]  Colin S. Maxwell,et al.  Gene exchange between two divergent species of the fungal human pathogen, Coccidioides , 2018, Evolution; international journal of organic evolution.

[8]  Colin S. Maxwell,et al.  Recent admixture between species of the fungal pathogen Histoplasma , 2018, Evolution letters.

[9]  Daniel L. Powell,et al.  Natural selection interacts with recombination to shape the evolution of hybrid genomes , 2018, Science.

[10]  Camilo Salazar,et al.  Recombination rate variation shapes barriers to introgression across butterfly genomes , 2018, bioRxiv.

[11]  W. Goldman,et al.  Genome Sequences Reveal Cryptic Speciation in the Human Pathogen Histoplasma capsulatum , 2017, mBio.

[12]  M. Wingfield,et al.  Fungal species and their boundaries matter – Definitions, mechanisms and practical implications , 2017 .

[13]  J. McEwen,et al.  Species boundaries in the human pathogen Paracoccidioides. , 2017, Fungal genetics and biology : FG & B.

[14]  Robert M. Waterhouse,et al.  BUSCO Applications from Quality Assessments to Gene Prediction and Phylogenomics , 2017, bioRxiv.

[15]  D. R. Matute,et al.  Fine scale mapping of genomic introgressions within the Drosophila yakuba clade , 2017, bioRxiv.

[16]  Christina A. Cuomo,et al.  Novel taxa of thermally dimorphic systemic pathogens in the Ajellomycetaceae (Onygenales) , 2017, Mycoses.

[17]  Christina A Cuomo,et al.  Population genomics and the evolution of virulence in the fungal pathogen Cryptococcus neoformans , 2017, bioRxiv.

[18]  M. Teixeira,et al.  Use of fluorescent oligonucleotide probes for differentiation between Paracoccidioides brasiliensis and Paracoccidioides lutzii in yeast and mycelial phase , 2017, Memorias do Instituto Oswaldo Cruz.

[19]  N. Galtier,et al.  Shedding Light on the Grey Zone of Speciation along a Continuum of Genomic Divergence , 2016, bioRxiv.

[20]  Christina A. Cuomo,et al.  Genome Diversity, Recombination, and Virulence across the Major Lineages of Paracoccidioides , 2016, mSphere.

[21]  A. M. Rodrigues,et al.  Identifying Paracoccidioides phylogenetic species by PCR-RFLP of the alpha-tubulin gene. , 2016, Medical mycology.

[22]  C. A. Inácio,et al.  Distinct patterns of yeast cell morphology and host responses induced by representative strains of Paracoccidioides brasiliensis (Pb18) and Paracoccidioides lutzii (Pb01). , 2016, Medical mycology.

[23]  C. Muirhead,et al.  Hybrid Incompatibilities, Local Adaptation, and the Genomic Distribution of Natural Introgression between Species , 2016, The American Naturalist.

[24]  G. Coop,et al.  The Strength of Selection against Neanderthal Introgression , 2015, bioRxiv.

[25]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[26]  B. Payseur,et al.  The Pace of Hybrid Incompatibility Evolution in House Mice , 2015, Genetics.

[27]  Toni Gabaldón,et al.  Redundans: an assembly pipeline for highly heterozygous genomes , 2015, Nucleic acids research.

[28]  L. Juliano,et al.  Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Differentiation of the Dimorphic Fungal Species Paracoccidioides brasiliensis and Paracoccidioides lutzii , 2015, Journal of Clinical Microbiology.

[29]  M. Felipe,et al.  Paracoccidioides Species Complex: Ecology, Phylogeny, Sexual Reproduction, and Virulence , 2014, PLoS pathogens.

[30]  Simon H. Martin,et al.  Evaluating the Use of ABBA–BABA Statistics to Locate Introgressed Loci , 2014, bioRxiv.

[31]  M. Xavier,et al.  Paracoccidioidomycosis in southern Rio Grande do Sul: A retrospective study of histopathologically diagnosed cases , 2014, Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology].

[32]  G. Sella,et al.  Footprints of ancient-balanced polymorphisms in genetic variation data from closely related species , 2014, Evolution; international journal of organic evolution.

[33]  D. Reich,et al.  The landscape of Neandertal ancestry in present-day humans , 2014, Nature.

[34]  A. Sano,et al.  Paracoccidioides brasiliensis and P. lutzii Antigens Elicit Different Serum IgG Responses in Chronic Paracoccidioidomycosis , 2013, Mycopathologia.

[35]  Simon H. Martin,et al.  Genome-wide evidence for speciation with gene flow in Heliconius butterflies , 2013, Genome research.

[36]  M. Teixeira,et al.  Paracoccidioides lutzii sp. nov.: biological and clinical implications. , 2013, Medical mycology.

[37]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[38]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[39]  M. Felipe,et al.  Molecular and Morphological Data Support the Existence of a Sexual Cycle in Species of the Genus Paracoccidioides , 2012, Eukaryotic Cell.

[40]  T. Giraud,et al.  The tempo and modes of evolution of reproductive isolation in fungi , 2012, Heredity.

[41]  Liam J. Revell,et al.  phytools: an R package for phylogenetic comparative biology (and other things) , 2012 .

[42]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[43]  Christina A. Cuomo,et al.  Comparative Genomic Analysis of Human Fungal Pathogens Causing Paracoccidioidomycosis , 2011, PLoS genetics.

[44]  David Reich,et al.  Testing for ancient admixture between closely related populations. , 2011, Molecular biology and evolution.

[45]  C. Ané,et al.  Comparing two Bayesian methods for gene tree/species tree reconstruction: simulations with incomplete lineage sorting and horizontal gene transfer. , 2011, Systematic biology.

[46]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[47]  Klaus Peter Schliep,et al.  phangorn: phylogenetic analysis in R , 2010, Bioinform..

[48]  J. McEwen,et al.  The human fungal pathogen Paracoccidioides brasiliensis (Onygenales: Ajellomycetaceae) is a complex of two species: phylogenetic evidence from five mitochondrial markers , 2010, Cladistics : the international journal of the Willi Hennig Society.

[49]  Colin N. Dewey,et al.  BUCKy: Gene tree/species tree reconciliation with Bayesian concordance analysis , 2010, Bioinform..

[50]  J. Coyne,et al.  A Test of the Snowball Theory for the Rate of Evolution of Hybrid Incompatibilities , 2010, Science.

[51]  L. Moyle,et al.  Hybrid Incompatibility “Snowballs” Between Solanum Species , 2010, Science.

[52]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[53]  Colin N. Dewey,et al.  Gene tree reconciliation: new developments in Bayesian concordance analysis with BUCKy , 2010 .

[54]  Philip L. F. Johnson,et al.  A Draft Sequence of the Neandertal Genome , 2010, Science.

[55]  Alimuddin Zumla Mandell, Douglas, and Bennett's principles and practice of infectious diseases , 2010, The Lancet Infectious Diseases.

[56]  L. Barrozo,et al.  Importance of xenarthrans in the eco-epidemiology of Paracoccidioides brasiliensis , 2009, BMC Research Notes.

[57]  A. Hendry,et al.  Along the speciation continuum in sticklebacks. , 2009, Journal of fish biology.

[58]  L. Mendoza,et al.  Phylogenetic analysis reveals a high level of speciation in the Paracoccidioides genus. , 2009, Molecular phylogenetics and evolution.

[59]  Patricia A. McLenachan,et al.  A Statistical Approach for Distinguishing Hybridization and Incomplete Lineage Sorting , 2009, The American Naturalist.

[60]  R. Petersen,et al.  Using heterozygosity to estimate a percentage DNA sequence similarity for environmental species' delimitation across basidiomycete fungi. , 2009, The New phytologist.

[61]  Kurt Hornik,et al.  Implementing a Class of Permutation Tests: The coin Package , 2008 .

[62]  M. Steel,et al.  Computing the Distribution of a Tree Metric , 2008, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[63]  J. Griese,et al.  Molecular detection of Paracoccidioides brasiliensis in road-killed wild animals. , 2008, Medical mycology.

[64]  Kevin de Queiroz,et al.  Species Concepts and Species Delimitation , 2007 .

[65]  D. Baum Concordance trees, concordance factors, and the exploration of reticulate genealogy , 2007 .

[66]  B. Larget,et al.  Bayesian estimation of concordance among gene trees. , 2006, Molecular biology and evolution.

[67]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[68]  M. Franco,et al.  Virulence profile of ten Paracoccidioides brasiliensis isolates: association with morphologic and genetic patterns. , 2005, Revista do Instituto de Medicina Tropical de Sao Paulo.

[69]  H. Ellegren Microsatellites: simple sequences with complex evolution , 2004, Nature Reviews Genetics.

[70]  Korbinian Strimmer,et al.  APE: Analyses of Phylogenetics and Evolution in R language , 2004, Bioinform..

[71]  C. Schardl,et al.  Interspecific hybridization in plant‐associated fungi and oomycetes: a review , 2003, Molecular ecology.

[72]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[73]  R. Mortara,et al.  Chromosomal polymorphism, syntenic relationships, and ploidy in the pathogenic fungus Paracoccidioides brasiliensis. , 2003, Fungal genetics and biology : FG & B.

[74]  R. Hudson,et al.  MATHEMATICAL CONSEQUENCES OF THE GENEALOGICAL SPECIES CONCEPT , 2002, Evolution; international journal of organic evolution.

[75]  G. Vendramin,et al.  Pitfalls in determining size homoplasy of microsatellite loci , 2001 .

[76]  J. McEwen,et al.  The habitat of Paracoccidioides brasiliensis: how far from solving the riddle? , 2001, Medical mycology.

[77]  A. Sugden The Strength of Selection , 2001, Science.

[78]  R. Puccia,et al.  Polymorphism in the Gene Coding for the Immunodominant Antigen gp43 from the Pathogenic FungusParacoccidioides brasiliensis , 2000, Journal of Clinical Microbiology.

[79]  D. Hibbett,et al.  Phylogenetic species recognition and species concepts in fungi. , 2000, Fungal genetics and biology : FG & B.

[80]  H. O. Kuti Role of the armadillo Dasypus novemcinctus in the epidemiology of paracoccidioidomycosis , 1998, Mycopathologia.

[81]  R. Martínez,et al.  Role of the armadillo Dasypus novemcinctus in the epidemiology of paracoccidioidomycosis. , 1998, Mycopathologia.

[82]  P. Jarne,et al.  Microsatellites, from molecules to populations and back. , 1996, Trends in ecology & evolution.

[83]  Carissa A. Sanchez,et al.  Comparative genomic analysis of tumors: detection of DNA losses and amplification. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[84]  M. Steel,et al.  Distributions of Tree Comparison Metrics—Some New Results , 1993 .

[85]  E Brummer,et al.  Paracoccidioidomycosis: an update , 1993, Clinical Microbiology Reviews.

[86]  Á. Restrepo,et al.  The ecology of Paracoccidioides brasiliensis: a puzzle still unsolved. , 1985, Sabouraudia.

[87]  D. Robinson,et al.  Comparison of phylogenetic trees , 1981 .

[88]  M. McCarthy The statistical approach , 1959 .

[89]  C. P. Taborda,et al.  Paracoccidioidomycosis , 2021, Encyclopedia of Mycology.

[90]  Matthew W. Hahn,et al.  Why Concatenation Fails Near the Anomaly Zone , 2018, Systematic biology.

[91]  Swapan Mallick,et al.  The genomic landscape of Neanderthal ancestry in present-day humans. , 2016 .

[92]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[93]  J. A. Carmona,et al.  Genome size and ploidy of Paracoccidioides brasiliensis reveals a haploid DNA content: flow cytometry and GP43 sequence analysis. , 2007, Fungal genetics and biology : FG & B.

[94]  John W. Taylor,et al.  Cryptic speciation and recombination in the fungus Paracoccidioides brasiliensis as revealed by gene genealogies. , 2006, Molecular biology and evolution.

[95]  Mike A. Steel,et al.  Constructing Optimal Trees from Quartets , 2001, J. Algorithms.

[96]  N. Gow,et al.  RFLP analysis reveals marked geographical isolation between strains of Paracoccidioides brasiliensis. , 2000, Medical mycology.

[97]  J. M. Herrera [Paracoccidioides brasiliensis]. , 1955, Archivos medicos panamenos.