The revolution in SiGe: Impact on device electronics

SiGe is having a major impact in device electronics. The most mature application is the SiGe BiCMOS technology which is in production throughout the world. The areas of most rapid growth are in CMOS where SiGe is being considered for a wide variety of elements including raised S/D, poly-SiGe Gates, in buffer layers to create a tensile strained Si layer, and as the conducting channel in MODFETs.

[1]  R. People,et al.  Erratum: Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained‐layer heterostructures [Appl. Phys. Lett. 47, 322 (1985)] , 1986 .

[2]  A 0.24 /spl mu/m SiGe BiCMOS mixed-signal RF production technology featuring a 47 GHz f/sub t/ HBT and 0.18 /spl mu/m L/sub ett/ CMOS , 1999, Proceedings of the 1999 Bipolar/BiCMOS Circuits and Technology Meeting (Cat. No.99CH37024).

[3]  M. Mastrapasqua,et al.  Very low cost graded SiGe base bipolar transistors for a high performance modular BiCMOS process , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[4]  C. Dickey,et al.  Parasitic modeling and noise mitigation in advanced RF/mixed-signal silicon germanium processes , 2003 .

[5]  T. Tanji,et al.  Imagine the Future in Telecommunications Technology , 2002, 32nd European Solid-State Device Research Conference.

[6]  Alvin J. Joseph,et al.  SiGe HBT performance and reliability trends through f/sub T/ of 350 GHz , 2003, 2003 IEEE International Reliability Physics Symposium Proceedings, 2003. 41st Annual..

[7]  Raminderpal Singh,et al.  Silicon Germanium: Technology, Modeling, and Design , 2003 .

[8]  S. Jeng,et al.  SiGe HBTs with cut-off frequency of 350 GHz , 2002, Digest. International Electron Devices Meeting,.

[9]  T. Tatsumi,et al.  A novel selective SiGe epitaxial growth technology for self-aligned HBTs , 1992, 1992 Symposium on VLSI Technology Digest of Technical Papers.

[10]  A new "mixed-mode" base current degradation mechanism in bipolar transistors , 2002, Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting.

[11]  K. Saraswat,et al.  A variable-work-function polycrystalline-Si/sub 1-x/Ge/sub x/ gate material for submicrometer CMOS technologies , 1991, IEEE Electron Device Letters.

[12]  Fan Chen,et al.  Silicon-Germanium Heterojunction Bipolar Transistors , 2002 .

[13]  R. Hammond,et al.  Extremely high transconductance Ge/Si/sub 0.4/Ge/sub 0.6/ p-MODFET's grown by UHV-CVD , 2000, IEEE Electron Device Letters.

[14]  A. Upham,et al.  A high-speed, high-sensitivity silicon lateral trench photodetector , 2002, IEEE Electron Device Letters.

[15]  Alvin J. Joseph,et al.  Current status and future trends of SiGe BiCMOS technology , 2001 .

[16]  D. Harame,et al.  High-mobility modulation-doped SiGe-channel p-MOSFETs , 1991, IEEE Electron Device Letters.

[17]  M. C. Ozturk,et al.  Advanced Si/sub 1-x/Gex source/drain and contact technologies for sub-70 nm CMOS , 2002, Digest. International Electron Devices Meeting,.

[18]  P. J. Restle,et al.  Si/SiGe p-Channel MOSFETs , 1991, 1991 Symposium on VLSI Technology.

[19]  H. Nayfeh,et al.  Strained silicon MOSFET technology , 2002, Digest. International Electron Devices Meeting,.

[20]  K. Ismail Si/SiGe high-speed field-effect transistors , 1995, Proceedings of International Electron Devices Meeting.

[21]  Alvin J. Joseph,et al.  The effects of geometrical scaling on the frequency response and noise performance of SiGe HBTs , 2002 .

[22]  High-frequency noise performance of SiGe p-channel MODFETs , 2000 .

[23]  D. Antoniadis,et al.  Design of Si/SiGe heterojunction complementary metal-oxide-semiconductor transistors , 1996 .

[24]  Gianlorenzo Masini,et al.  High performance germanium-on-silicon detectors for optical communications , 2002 .

[25]  Kun-Ming Chen,et al.  Reduction of source/drain series resistance and its impact on device performance for PMOS transistors with raised Si/sub 1-x/Ge x source/drain , 2000 .

[26]  J. Cressler,et al.  Si/SiGe epitaxial-base transistors. I. Materials, physics, and circuits , 1995 .

[27]  K. Saraswat,et al.  Low-temperature (, 1992, IEEE Electron Device Letters.

[28]  S. Jeng,et al.  Process variability analysis of a Si/SiGe HBT technology with greater than 200 GHz performance , 2002, Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting.

[29]  Joe C. Campbell,et al.  8 Gb/s CMOS compatible monolithically integrated silicon optical receiver , 2002, Optical Fiber Communication Conference and Exhibit.

[30]  S. Csutak,et al.  High-speed interdigitated Ge PIN photodetectors , 2002, IEEE Photonics Technology Letters.

[31]  T. Shiba,et al.  A raised source/drain technology using in-situ P-doped SiGe and B-doped Si for 0.1-/spl mu/m CMOS ULSIs , 1997, International Electron Devices Meeting. IEDM Technical Digest.

[32]  D. Harame,et al.  Advanced passive devices for enhanced integrated RF circuit performance , 2002, 2002 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium. Digest of Papers (Cat. No.02CH37280).

[33]  Krishna C. Saraswat,et al.  A low-temperature (, 1991, International Electron Devices Meeting 1991 [Technical Digest].