for Scalable Anomaly Detection

[1]  Yuefan Deng,et al.  New trends in high performance computing , 2001, Parallel Computing.

[2]  Pradeep Dubey,et al.  Debunking the 100X GPU vs. CPU myth: an evaluation of throughput computing on CPU and GPU , 2010, ISCA.

[3]  Satoshi Matsuoka,et al.  An efficient, model-based CPU-GPU heterogeneous FFT library , 2008, 2008 IEEE International Symposium on Parallel and Distributed Processing.

[4]  P. J. Narayanan,et al.  Singular value decomposition on GPU using CUDA , 2009, 2009 IEEE International Symposium on Parallel & Distributed Processing.

[5]  Hiroki Toyokawa,et al.  On Parallelization of the I-SVD Algorithm and its Evaluation for Clustered Singular Values , 2009, PDPTA.

[6]  J. Cuppen A divide and conquer method for the symmetric tridiagonal eigenproblem , 1980 .

[7]  Keisuke Inoue,et al.  Knowledge Discovery from Heterogeneous Dynamic Systems using Change-Point Correlations , 2005, SDM.

[8]  Yi Yang,et al.  A GPGPU compiler for memory optimization and parallelism management , 2010, PLDI '10.

[9]  Leonardo Neumeyer,et al.  S4: Distributed Stream Computing Platform , 2010, 2010 IEEE International Conference on Data Mining Workshops.

[10]  Jaeyoung Choi,et al.  The design of a parallel dense linear algebra software library: Reduction to Hessenberg, tridiagonal, and bidiagonal form , 1995, Numerical Algorithms.

[11]  Kun-Lung Wu,et al.  SODA: An Optimizing Scheduler for Large-Scale Stream-Based Distributed Computer Systems , 2008, Middleware.

[12]  Mateo Valero,et al.  Available task-level parallelism on the Cell BE , 2009, HiPC 2009.

[13]  Kun-Lung Wu,et al.  A code generation approach to optimizing high-performance distributed data stream processing , 2009, CIKM.

[14]  Yu. A. Gur'yan,et al.  Parts I and II , 1982 .

[15]  Zhen Liu,et al.  Stream Processing Based Intelligent Transport Systems , 2007, 2007 7th International Conference on ITS Telecommunications.

[16]  Tsuyoshi Idé,et al.  Change-Point Detection using Krylov Subspace Learning , 2007, SDM.