Conserved linking in single- and double-stranded polymers

We demonstrate a variant of the bond fluctuation lattice Monte Carlo model in which moves through cis conformations are forbidden. Ring polymers in this model have a conserved quantity that amounts to a topological linking number. Increased linking number reduces the radius of gyration mildly. A linking number of order 0.2 per bond leads to an 8% reduction of the radius for 128-bond chains. This percentage appears to rise with increasing chain length, contrary to expectation. For ring chains evolving without the conservation of linking number, we demonstrate a substantial anticorrelation between the twist and writhe variables whose sum yields the linking number. We raise the possibility that our observed anticorrelations may have counterparts in the most important practical polymer that conserves linking number, DNA.

[1]  K. Yoshikawa,et al.  Effect of twisting on the behavior of a double-stranded polymer chain: A Monte Carlo simulation , 1999 .

[2]  K. E. Gates,et al.  The writhing of circular cross–section rods: undersea cables to DNA supercoils , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[3]  Grant D. Smith,et al.  Conformations of 2,4-Diphenylpentane: A Quantum Chemistry and Gas-Phase Molecular Dynamics Simulation Study , 1998 .

[4]  Philip Nelson,et al.  Entropic Elasticity of Twist-Storing Polymers , 1997, cond-mat/9712004.

[5]  S. Whittington,et al.  LETTER TO THE EDITOR: The shapes of self-avoiding polygons with torsion , 1997 .

[6]  P. Nelson,et al.  Torsional directed walks, entropic elasticity, and DNA twist stiffness. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[7]  P. Nelson,et al.  New measurements of DNA twist elasticity. , 1997, Biophysical journal.

[8]  J. Moroz,et al.  SELF-AVOIDING WALKS WITH WRITHE , 1997, cond-mat/9705066.

[9]  R. Kamien Local writhing dynamics , 1997, cond-mat/9703137.

[10]  S. Whittington,et al.  Entanglement complexity of lattice ribbons , 1996 .

[11]  S. Whittington,et al.  A Monte Carlo algorithm for lattice ribbons , 1996 .

[12]  Marko,et al.  Statistical mechanics of supercoiled DNA. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  Orlandini,et al.  Lattice ribbons: A model of double-stranded polymers. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  M. Tabor,et al.  A new twist in the kinematics and elastic dynamics of thin filaments and ribbons , 1994 .

[15]  Eric D. Siggia,et al.  Bending and Twisting Elasticity of DNA , 1994 .

[16]  S. Whittington,et al.  The writhe of a self-avoiding walk , 1994 .

[17]  S. Whittington,et al.  The writhe of a self-avoiding polygon , 1993 .

[18]  M Frank-Kamenetskii,et al.  Conformational and thermodynamic properties of supercoiled DNA. , 1992, Journal of molecular biology.

[19]  T Schlick,et al.  Supercoiled DNA energetics and dynamics by computer simulation. , 1992, Journal of molecular biology.

[20]  K. Klenin,et al.  Computer simulation of DNA supercoiling. , 1991, Journal of molecular biology.

[21]  Kurt Kremer,et al.  The bond fluctuation method: a new effective algorithm for the dynamics of polymers in all spatial dimensions , 1988 .

[22]  J. Shimada,et al.  Moments for DNA topoisomers: The helical wormlike chain , 1988, Biopolymers.

[23]  J. Shimada,et al.  Statistical mechanics of DNA topoisomers. The helical worm-like chain. , 1985, Journal of molecular biology.

[24]  E. Baker,et al.  Biopolymers , 1984 .

[25]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[26]  Kurt Binder,et al.  Monte Carlo studies on the freely jointed polymer chain with excluded volume interaction , 1979 .

[27]  W. MacKnight Macromolecules. , 1976, Science.

[28]  F. B. Fuller The writhing number of a space curve. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[29]  James H. White Self-Linking and the Gauss Integral in Higher Dimensions , 1969 .

[30]  Nicholas R. Cozzarelli,et al.  DNA topology and its biological effects , 1990 .

[31]  M. Frank-Kamenetskii,et al.  REVIEWS OF TOPICAL PROBLEMS: Topological aspects of the physics of polymers: The theory and its biophysical applications , 1981 .

[32]  J. M. Oshorn Proc. Nat. Acad. Sei , 1978 .

[33]  山川 裕巳,et al.  Modern theory of polymer solutions , 1971 .

[34]  M. Muir Physical Chemistry , 1888, Nature.