Influence of interrupted quenching on artificial aging of Al-Mg-Si alloys

[1]  P. Uggowitzer,et al.  Mechanisms controlling the artificial aging of Al-Mg-Si Alloys , 2011 .

[2]  E. .. Mittemeijer,et al.  The Kinetics of the Precipitation of Co from Supersaturated Cu-Co Alloy , 2011 .

[3]  Matthew D. H. Lay,et al.  Natural Aging in Al‐Mg‐Si Alloys – A Process of Unexpected Complexity , 2010 .

[4]  J. Banhart,et al.  Kinetics of natural aging in Al-Mg-Si alloys studied by positron annihilation lifetime spectroscopy , 2010, 1006.4778.

[5]  P. Mascher,et al.  Study of the early stages of clustering in Al–Mg–Si alloys using the electrical resistivity measurements , 2009 .

[6]  H. Zurob,et al.  A model for the growth of solute clusters based on vacancy trapping , 2009 .

[7]  J. Banhart,et al.  Positive effect of natural pre-ageing on precipitation hardening in Al-0.44at% Mg-0.38at% Si alloy. , 2009, Ultramicroscopy.

[8]  Ian Sinclair,et al.  Quench sensitivity of toughness in an Al alloy: direct observation and analysis of failure initiation at the precipitate free zone , 2008 .

[9]  D. Lloyd,et al.  A study on the early-stage decomposition in the Al–Mg–Si–Cu alloy AA6111 by electrical resistivity and three-dimensional atom probe , 2007 .

[10]  C. Bos,et al.  Analysis of solid state phase transformation kinetics: models and recipes , 2007 .

[11]  A. Crosky,et al.  Secondary precipitation in an Al–Mg–Si–Cu alloy , 2007 .

[12]  M. Sluiter,et al.  Phase stability and structural features of matrix-embedded hardening precipitates in Al-Mg-Si alloys in the early stages of evolution , 2007 .

[13]  Alfred Cerezo,et al.  Aspects of the observation of clusters in the 3‐dimensional atom probe , 2007 .

[14]  A. Crosky,et al.  Microstructural development and mechanical properties of interrupted aged Al-Mg-Si-Cu alloy , 2006 .

[15]  Tatsuo Sato,et al.  3DAP Characterization and Thermal Stability of Nano-Scale Clusters in Al-Mg-Si Alloys , 2006 .

[16]  M. Sluiter,et al.  Phase stability and structural relations of nanometer-sized, matrix-embedded precipitate phases in Al-Mg-Si alloys in the late stages of evolution , 2006 .

[17]  D. Blavette,et al.  3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al-Mg-Si alloy , 2006 .

[18]  D. Lloyd,et al.  Effect of natural aging on the resistivity evolution during artificial aging of the aluminum alloy AA6111 , 2005 .

[19]  Chris Wolverton,et al.  First-principles study of crystal structure and stability of Al-Mg-Si-(Cu) precipitates , 2004 .

[20]  R. C. Picu,et al.  Atomistic study of pipe diffusion in Al–Mg alloys , 2004 .

[21]  Y. Chang,et al.  Diffusion coefficients of some solutes in fcc and liquid Al: critical evaluation and correlation , 2003 .

[22]  A. Cerezo,et al.  A procedure for quantification of precipitate microstructures from three-dimensional atom probe data. , 2003, Ultramicroscopy.

[23]  J. Christian,et al.  The theory of transformations in metals and alloys , 2003 .

[24]  H. W. Zandbergen,et al.  The influence of temperature and storage time at RT on nucleation of the β phase in a 6082 Al-Mg-Si alloy , 2003 .

[25]  J. Hosson,et al.  On the effects of thermomechanical processing on failure mode in precipitation-hardened aluminium alloys , 2002 .

[26]  F. Sommer,et al.  The isothermal and isochronal kinetics of the crystallisation of bulk amorphous Pd40Cu30P20Ni10 , 2002 .

[27]  E. .. Mittemeijer,et al.  Determination and interpretation of isothermal and non-isothermal transformation kinetics; the effective activation energies in terms of nucleation and growth , 2002 .

[28]  H. W. Zandbergen,et al.  Atomic model for GP-zones in a 6082 Al–Mg–Si system , 2001 .

[29]  J. Bryant The effects of preaging treatments on aging kinetics and mechanical properties in AA6111 aluminum autobody sheet , 1999 .

[30]  Mitsuhiro Murayama,et al.  PRE-PRECIPITATE CLUSTERS AND PRECIPITATION PROCESSES IN Al-Mg-Si ALLOYS , 1999 .

[31]  K. Hono,et al.  Atom probe studies on the early stages of precipitation in Al-Mg-Si alloys , 1998 .

[32]  G. A. Edwards,et al.  The precipitation sequence in Al–Mg–Si alloys , 1998 .

[33]  H. W. Zandbergen,et al.  The crystal structure of the β′ phase in Al–Mg–Si alloys , 1998 .

[34]  K. Matsuda,et al.  High-resolution electron microscopy on the structure of Guinier-Preston zones in an Al-1.6 mass Pct Mg2Si alloy , 1998 .

[35]  H. W. Zandbergen,et al.  Structure Determination of Mg5Si6 Particles in Al by Dynamic Electron Diffraction Studies , 1997 .

[36]  Michael K Miller,et al.  Atom Probe Field Ion Microscopy , 1996 .

[37]  M. Matsuo,et al.  Effect of Pre-Aging Temperature on the Behavior in the Early Stage of Aging at High Temperature for Al-Mg-Si Alloy , 1996 .

[38]  E. Mittemeijer Analysis of the kinetics of phase transformations , 1992 .

[39]  D. Laughlin,et al.  Formation of a modified β′ phase in aluminum alloy 6061 , 1984 .

[40]  P. Rossiter,et al.  Resistivity mechanisms during clustering in alloys , 1981 .

[41]  J. Lendvai,et al.  The mechanism of clustering in supersaturated solid solutions of A1-Mg2Si alloys , 1972 .

[42]  F. Fickett Aluminum—1. A review of resistive mechanisms in aluminum , 1971 .

[43]  H. E. Kissinger Reaction Kinetics in Differential Thermal Analysis , 1957 .

[44]  H. E. Kissinger Variation of Peak Temperature With Heating Rate in Differential Thermal Analysis , 1956 .

[45]  D. Lloyd,et al.  Quantification of grain boundary precipitation and the influence of quench rate in 6XXX aluminum alloys , 2007 .

[46]  G. Svenningsen,et al.  Effect of high temperature heat treatment on intergranular corrosion of AlMgSi(Cu) model alloy , 2006 .

[47]  S. M. Allen,et al.  A calorimetric study of precipitation in commercial aluminium alloy 6061 , 1991 .