Surface Energy Budget, Albedo, and Thermal Inertia at Jezero Crater, Mars, as Observed From the Mars 2020 MEDA Instrument

The Mars Environmental Dynamics Analyzer (MEDA) on board Perseverance includes first‐of‐its‐kind sensors measuring the incident and reflected solar flux, the downwelling atmospheric IR flux, and the upwelling IR flux emitted by the surface. We use these measurements for the first 350 sols of the Mars 2020 mission (Ls ∼ 6°–174° in Martian Year 36) to determine the surface radiative budget on Mars and to calculate the broadband albedo (0.3–3 μm) as a function of the illumination and viewing geometry. Together with MEDA measurements of ground temperature, we calculate the thermal inertia for homogeneous terrains without the need for numerical thermal models. We found that (a) the observed downwelling atmospheric IR flux is significantly lower than the model predictions. This is likely caused by the strong diurnal variation in aerosol opacity measured by MEDA, which is not accounted for by numerical models. (b) The albedo presents a marked non‐Lambertian behavior, with lowest values near noon and highest values corresponding to low phase angles (i.e., Sun behind the observer). (c) Thermal inertia values ranged between 180 (sand dune) and 605 (bedrock‐dominated material) SI units. (d) Averages of albedo and thermal inertia (spatial resolution of ∼3–4 m2) along Perseverance's traverse are in very good agreement with collocated retrievals of thermal inertia from Thermal Emission Imaging System (spatial resolution of 100 m per pixel) and of bolometric albedo in the 0.25–2.9 μm range from (spatial resolution of ∼300 km2). The results presented here are important to validate model predictions and provide ground‐truth to orbital measurements.

[1]  D. Banfield,et al.  Convective Vortices and Dust Devils Detected and Characterized by Mars 2020 , 2023, Journal of Geophysical Research: Planets.

[2]  M. Genzer,et al.  Dust Devil Frequency of Occurrence and Radiative Effects at Jezero Crater, Mars, as Measured by MEDA Radiation and Dust Sensor (RDS) , 2023, Journal of Geophysical Research: Planets.

[3]  M. Lemmon,et al.  Diurnal and Seasonal Variations of Aerosol Optical Depth Observed by MEDA/TIRS at Jezero Crater, Mars , 2023, Journal of Geophysical Research: Planets.

[4]  M. Lemmon,et al.  Mars 2020 Perseverance Rover Studies of the Martian Atmosphere Over Jezero From Pressure Measurements , 2022, Journal of geophysical research. Planets.

[5]  K. Herkenhoff,et al.  Winds at the Mars 2020 Landing Site. 2. Wind Variability and Turbulence , 2022, Journal of geophysical research. Planets.

[6]  K. Herkenhoff,et al.  Winds at the Mars 2020 Landing Site: 1. Near‐Surface Wind Patterns at Jezero Crater , 2022, Journal of Geophysical Research: Planets.

[7]  H. Savijärvi,et al.  Surface Energy Fluxes and Temperatures at Jezero Crater, Mars , 2022, Journal of Geophysical Research: Planets.

[8]  R. Wiens,et al.  Acoustics Reveals Short‐Term Air Temperature Fluctuations Near Mars' Surface , 2022, Geophysical Research Letters.

[9]  M. Lemmon,et al.  Dust, Sand, and Winds Within an Active Martian Storm in Jezero Crater , 2022, Geophysical research letters.

[10]  D. Kass,et al.  Mars’ emitted energy and seasonal energy imbalance , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[11]  K. Herkenhoff,et al.  The dynamic atmospheric and aeolian environment of Jezero crater, Mars , 2022, Science advances.

[12]  R. L. Heredero,et al.  Radiation and Dust Sensor for Mars Environmental Dynamic Analyzer Onboard M2020 Rover , 2022, Sensors.

[13]  M. Lemmon,et al.  The Surface Energy Budget at Gale Crater During the First 2500 Sols of the Mars Science Laboratory Mission , 2021, Journal of Geophysical Research: Planets.

[14]  M. Golombek,et al.  Soil Thermophysical Properties Near the InSight Lander Derived From 50 Sols of Radiometer Measurements , 2021, Journal of geophysical research. Planets.

[15]  Isabel Pérez-Grande,et al.  Thermal calibration of the MEDA-TIRS radiometer onboard NASA's Perseverance rover , 2021 .

[16]  F. Ferri,et al.  The Mars Environmental Dynamics Analyzer, MEDA. A Suite of Environmental Sensors for the Mars 2020 Mission , 2021, Space Science Reviews.

[17]  A. Harri,et al.  Water vapor adsorption on Mars , 2021 .

[18]  C. Weitz,et al.  CRISM-based High Spatial Resolution Thermal Inertia Mapping along Curiosity's Traverses in Gale Crater , 2021 .

[19]  A. G. Hayes,et al.  Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 4. Final mission observations , 2020 .

[20]  R. Wiens,et al.  Mars 2020 Mission Overview , 2020, Space Science Reviews.

[21]  M. Ramos,et al.  Radiometric and angular calibration tests for the MEDA-TIRS radiometer onboard NASA’s Mars 2020 mission , 2020 .

[22]  M. Lemmon,et al.  In Situ UV Measurements by MSL/REMS: Dust Deposition and Angular Response Corrections , 2020, Space Science Reviews.

[23]  David Mimoun,et al.  The atmosphere of Mars as observed by InSight , 2020, Nature Geoscience.

[24]  A. Harri,et al.  Curiosity observations and column model integrations for a martian global dust event , 2020 .

[25]  N. Mangold,et al.  Refining the age, emplacement and alteration scenarios of the olivine-rich unit in the Nili Fossae region, Mars , 2020 .

[26]  J. Wyngaard,et al.  The Atmospheric Boundary Layer , 2019, Wind Effects on Structures.

[27]  M. Lemmon,et al.  Seasonal Deposition and Lifting of Dust on Mars as Observed by the Curiosity Rover , 2018, Scientific Reports.

[28]  Jeffrey R. Johnson,et al.  The albedo of Mars: Six Mars years of observations from Pancam on the Mars Exploration Rovers and comparisons to MOC, CTX and HiRISE , 2018, Icarus.

[29]  D. Breuer,et al.  The Heat Flow and Physical Properties Package (HP3) for the InSight Mission , 2018, Space Science Reviews.

[30]  M. Shepard Introduction to Planetary Photometry , 2017 .

[31]  A. Peña,et al.  The Thermal Infrared Sensor (TIRS) of the Mars Environmental Dynamics Analyzer (MEDA) instrument onboard Mars 2020 , 2017, 2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace).

[32]  M. D. Smith,et al.  The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity , 2017 .

[33]  Robert M. Haberle,et al.  The atmosphere and climate of Mars , 2017 .

[34]  Thierry Fouchet,et al.  Radiative Process: Techniques and Applications , 2017 .

[35]  K. Herkenhoff,et al.  The Thermophysical Properties of the Bagnold Dunes, Mars: Ground‐Truthing Orbital Data , 2017, 1711.10699.

[36]  Mark T. Lemmon,et al.  Thermophysical Properties Along Curiosity's Traverse in Gale Crater, Mars, Derived from the REMS Ground Temperature Sensor , 2016 .

[37]  P. Geissler,et al.  Orbital monitoring of martian surface changes , 2016 .

[38]  Germán David Mendoza Martínez,et al.  A model to calculate solar radiation fluxes on the Martian surface , 2015 .

[39]  M. Vincendon,et al.  Mars Express measurements of surface albedo changes over 2004–2010 , 2014, 1407.2831.

[40]  A. Vasavada,et al.  Surface energy budget and thermal inertia at Gale Crater: Calculations from ground-based measurements , 2014, Journal of geophysical research. Planets.

[41]  Raymond E. Arvidson,et al.  Observations and preliminary science results from the first 100 sols of MSL Rover Environmental Monitoring Station ground temperature sensor measurements at Gale Crater , 2014 .

[42]  Xin‐ping Wang,et al.  Variation of albedo to soil moisture for sand dunes and biological soil crusts in arid desert ecosystems , 2014, Environmental Earth Sciences.

[43]  M. Golombek,et al.  Surface Properties of the Mars Science Laboratory Candidate Landing Sites: Characterization from Orbit and Predictions , 2012 .

[44]  Justin N. Maki,et al.  The Mars Science Laboratory Engineering Cameras , 2012 .

[45]  B. Marticorena,et al.  An aerodynamic roughness length map derived from extended Martian rock abundance data , 2012 .

[46]  M. Wolff,et al.  Revisiting the radiative impact of dust on Mars using the LMD Global Climate Model , 2011 .

[47]  Javier Gómez-Elvira,et al.  The Rover Environmental Monitoring Station Ground Temperature Sensor: A Pyrometer for Measuring Ground Temperature on Mars , 2010, Sensors.

[48]  A. Määttänen,et al.  Boundary‐layer simulations for the Mars Phoenix lander site , 2010 .

[49]  M. Mellon,et al.  Initial results from the thermal and electrical conductivity probe (TECP) on Phoenix , 2010 .

[50]  S. Dickenshied,et al.  JMARS - A Planetary GIS , 2009 .

[51]  L. Vázquez,et al.  Characterization of the Martian Surface Layer , 2009 .

[52]  Jeffrey R. Johnson,et al.  Surface albedo observations at Gusev Crater and Meridiani Planum, Mars , 2008 .

[53]  M. Mellon,et al.  Apparent thermal inertia and the surface heterogeneity of Mars , 2007 .

[54]  Yves Langevin,et al.  Hyperspectral imaging of convective CO2 ice clouds in the equatorial mesosphere of Mars , 2007 .

[55]  Robert M. Haberle,et al.  Global warming and climate forcing by recent albedo changes on Mars , 2007, Nature.

[56]  William H. Farrand,et al.  Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 2. Opportunity , 2006 .

[57]  Amitabha Ghosh,et al.  One Martian year of atmospheric observations using MER Mini‐TES , 2006 .

[58]  P. Christensen,et al.  High-resolution thermal inertia derived from the Thermal Emission Imaging System (THEMIS): Thermal model and applications , 2006 .

[59]  William H. Farrand,et al.  Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 1. Spirit: PANCAM PHOTOMETRY-SPIRIT , 2006 .

[60]  Robin L. Fergason,et al.  Physical properties of the Mars Exploration Rover landing sites as inferred from Mini‐TES–derived thermal inertia , 2006 .

[61]  L. Roberts,et al.  Observing the martian surface albedo pattern: Comparing the AEOS and TES data sets , 2005 .

[62]  Raymond E. Arvidson,et al.  Global thermal inertia and surface properties of Mars from the MGS mapping mission , 2005 .

[63]  Mark Maimone,et al.  Mars exploration rover engineering cameras , 2001, Remote Sensing.

[64]  M. Mellon,et al.  Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results , 2001 .

[65]  M. Mellon,et al.  High-Resolution Thermal Inertia Mapping from the Mars Global Surveyor Thermal Emission Spectrometer , 2000 .

[66]  Stephen R. Lewis,et al.  Improved general circulation models of the Martian atmosphere from the surface to above 80 km , 1999 .

[67]  Nicolas Thomas,et al.  Preliminary results on photometric properties of materials at the Sagan Memorial Station, Mars , 1999 .

[68]  Raymond E. Arvidson,et al.  Optical scattering properties of terrestrial varnished basalts compared with rocks and soils at the Viking Lander sites , 1997 .

[69]  M. Presley,et al.  The effect of bulk density and particle size sorting on the thermal conductivity of particulate materials under Martian atmospheric pressures , 1997 .

[70]  T. Bergot An introduction to boundary layer meteorology - Par Roland B. Stull , 1994 .

[71]  Robert M. Haberle,et al.  A boundary-layer model for Mars - Comparison with Viking lander and entry data , 1993 .

[72]  R. Stull An Introduction to Boundary Layer Meteorology , 1988 .

[73]  P. Christensen Global albedo variations on Mars: Implications for active aeolian transport, deposition, and erosion , 1988 .

[74]  Conway B. Leovy,et al.  Diurnal Variations of the Martian Surface Layer Meteorological Parameters During the First 45 Sols at Two Viking Lander Sites , 1978 .

[75]  Terry Z. Martin,et al.  Thermal and albedo mapping of Mars during the Viking primary mission , 1977 .

[76]  M. Golombek,et al.  Thermal Conductivity of the Martian Soil at the InSight Landing Site From HP3 Active Heating Experiments , 2021, Journal of Geophysical Research: Planets.