Bacterial Foraging Algorithm Guided by Particle Swarm Optimization for Parameter Identification of Photovoltaic Modules

This paper presents an optimization-based solution to the problem of offline parameter identification in crystalline silicon photovoltaic (PV) modules. An objective function representing the difference between computed and targeted performance is minimized using global heuristic optimization algorithms. The targeted performance signifies the values of four characteristics at standard test conditions (STCs), as given in the manufacturer datasheet. The optimization problem is solved with three different algorithms, i.e., particle swarm optimization (PSO), bacterial foraging (BF), and PSO-guided BF. On an LDK PV test module, the PSO-guided BF algorithm gives the best objective function value. Parameters of the test module are also identified through measured performance. The good matching between experimental measurements and computed performance of the test PV module validates the proposed technique, and shows the accuracy of modeling.

[1]  N. Rajasekar,et al.  Bacterial Foraging Algorithm based solar PV parameter estimation , 2013 .

[2]  Mai Xiong-faa Bacterial foraging algorithm based on gradient particle swarm optimization algorithm , 2012 .

[3]  Syafaruddin,et al.  A comprehensive MATLAB Simulink PV system simulator with partial shading capability based on two-diode model , 2011 .

[4]  W. Marsden I and J , 2012 .

[5]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[6]  D. Chan,et al.  Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics , 1987, IEEE Transactions on Electron Devices.

[7]  A. García,et al.  Selecting a suitable model for characterizing photovoltaic devices , 2002 .

[8]  M S Li,et al.  Bacterial foraging algorithm with varying population , 2010, Biosyst..

[9]  A. Sellami,et al.  Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction , 2010 .

[10]  V. Agarwal,et al.  MATLAB-Based Modeling to Study the Effects of Partial Shading on PV Array Characteristics , 2008, IEEE Transactions on Energy Conversion.

[11]  Kashif Ishaque,et al.  An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE) , 2011 .

[12]  J. Phillips,et al.  A comparative study of extraction methods for solar cell model parameters , 1986 .

[13]  N. Rajasekar,et al.  Bacterial foraging algorithm based parameter estimation of solar PV model , 2013, 2013 Annual International Conference on Emerging Research Areas and 2013 International Conference on Microelectronics, Communications and Renewable Energy.

[14]  Rachid Chenni,et al.  A detailed modeling method for photovoltaic cells , 2007 .

[15]  Q. Henry Wu,et al.  Bacterial Foraging Algorithm For Dynamic Environments , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[16]  M. Belhamel,et al.  Extraction and analysis of solar cell parameters from the illuminated current–voltage curve , 2005 .

[17]  Yang Ping,et al.  A bacterial foraging global optimization algorithm based on the particle swarm optimization , 2010, 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems.

[18]  G. Farivar,et al.  A New Approach for Solar Module Temperature Estimation Using the Simple Diode Model , 2011, IEEE Transactions on Energy Conversion.

[19]  José Neves,et al.  The fully informed particle swarm: simpler, maybe better , 2004, IEEE Transactions on Evolutionary Computation.

[20]  A. Chatterjee,et al.  Identification of Photovoltaic Source Models , 2011, IEEE Transactions on Energy Conversion.

[21]  Vandana,et al.  Estimation of Photovoltaic Cells Model Parameters using Particle Swarm Optimization , 2014 .

[22]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[23]  Kevin M. Passino,et al.  Biomimicry of bacterial foraging for distributed optimization and control , 2002 .

[24]  P. Mialhe,et al.  Simple parameter extraction method for illuminated solar cells , 2006 .

[25]  A. Ortiz-Conde,et al.  New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I–V characteristics , 2006 .

[26]  Meiying Ye,et al.  Parameter extraction of solar cells using particle swarm optimization , 2009 .