Natural exact covering systems and the reversion of the Möbius series

We prove that the number of natural exact covering systems of cardinality k is equal to the coefficient of $$x^k$$xk in the reversion of the power series $$\sum _{k \ge 1} \mu (k) x^k$$∑k≥1μ(k)xk, where $$\mu (k)$$μ(k) is the usual number-theoretic Möbius function. Using this result, we deduce an asymptotic expression for the number of such systems.

[1]  John Friedlander On exact coverings of the integers , 1972 .

[2]  Nechemia Burshtein,et al.  On natural exactly covering systems of congruences having moduli occuring at most M times , 1976, Discret. Math..

[3]  Nechemia Burshtein On Natural Exactly Covering Systems of congruences having moduli occurring at most twice , 1976 .

[4]  Ronald L. Graham,et al.  Covering the Positive Integers by Disjoint Sets of the Form {[n alpha + beta]: n = 1, 2, ...} , 1973, J. Comb. Theory, Ser. A.

[5]  J. Littlewood,et al.  Contributions to the theory of the riemann zeta-function and the theory of the distribution of primes , 1916 .

[6]  S. Porubský,et al.  Natural exactly covering systems of congruences , 1974 .

[7]  S. Porubský,et al.  Results and problems on covering systems of residue classes , 1981 .

[8]  Morris Newman,et al.  Roots of unity and covering sets , 1971 .

[9]  Pascal Hubert,et al.  Combinatorial properties of sequences defined by the billiard in paved triangles , 1996 .

[10]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[11]  Stefan Znám A simple characterization of disjoint covering systems , 1975, Discret. Math..

[12]  P. Flajolet,et al.  Analytic Combinatorics: RANDOM STRUCTURES , 2009 .

[13]  R. J. Simpson,et al.  Exact coverings of the integers by arithmetic progressions , 1986, Discret. Math..

[14]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[15]  Zhi-Wei Sun PROBLEMS AND RESULTS ON COVERING SYSTEMS , 2005 .

[16]  Pascal Hubert,et al.  Propriétés combinatoires des suites définies par le billard dans les triangles pavants , 1996, Theor. Comput. Sci..

[17]  G. Hardy,et al.  An Introduction to the Theory of Numbers , 1938 .

[18]  Josef Kittler,et al.  Combinatorial Algorithms , 2016, Lecture Notes in Computer Science.

[19]  Ofir Schnabel,et al.  On the Reducibility of Exact Covering Systems , 2014, Integers.

[20]  Eitan Altman,et al.  Balanced sequences and optimal routing , 2000, JACM.

[21]  Aviezri S. Fraenkel A characterization of exactly covering congruences , 1973, Discret. Math..

[22]  Bretislav Novak,et al.  Disjoint Covering Systems , 1974 .

[23]  Pascal Hubert,et al.  Suites équilibrées , 2000, Theor. Comput. Sci..

[24]  Carl-Erik Fröberg,et al.  Numerical studies of the Möbius power series , 1966 .

[25]  Ivan Korec,et al.  Irreducible disjoint covering systems , 1984 .