Progress in Thermomechanical Analysis of Friction Stir Welding

This article reviews the status of thermomechanical analysis of the friction stir welding (FSW) process for establishing guidelines for further investigation, filling the available research gaps, and expanding FSW applications. Firstly, the advantages and applications of FSW process are introduced, and the significance and key issues for thermomechanical analysis in FSW are pointed out. Then, solid mechanic and fluid dynamic methods in modeling FSW process are described, and the key issues in modeling FSW are discussed. Different available mesh modeling techniques including the applications, benefits and shortcomings are explained. After that, at different subsections, the thermomechanical analysis in FSW of aluminum alloys and steels are examined and summarized in depth. Finally, the conclusions and summary are presented in order to investigate the lack of knowledge and the possibilities for future study of each method and each material.

[1]  B. Carlson,et al.  Analysis of energy flow in gas metal arc welding processes through self-consistent three-dimensional process simulation , 2014 .

[2]  D. Agard,et al.  Microtubule nucleation by γ-tubulin complexes , 2011, Nature Reviews Molecular Cell Biology.

[3]  Mokhtar Awang,et al.  Design, Fabrication and Testing of Fixture for Implementation of a New Approach to Incorporate Tool tilting in Friction Stir Welding , 2014 .

[4]  R. Mishraa,et al.  Friction Stir Welding And Processing , 2005 .

[5]  Paul A. Colegrove,et al.  CFD modelling of friction stir welding of thick plate 7449 aluminium alloy , 2006 .

[6]  M. Todorović,et al.  HEAT GENERATION DURING PLUNGE STAGE IN FRICTION STIR WELDING , 2013 .

[7]  Changying Zhao,et al.  Effect of enhanced heat and mass transport and flow reversal during cool down on weld pool shapes in laser spot welding of steel , 2013 .

[8]  Chuansong Wu,et al.  A numerical model of pin thread effect on material flow and heat generation in shear layer during friction stir welding , 2018, Journal of Manufacturing Processes.

[9]  T. S. Srivatsan,et al.  An Investigation of Friction During Friction Stir Welding of Metallic Materials , 2009 .

[11]  Radovan Kovacevic,et al.  Thermal modeling of friction stir welding in a moving coordinate system and its validation , 2003 .

[12]  J. Ponthot,et al.  Two 3D thermomechanical numerical models of friction stir welding processes with a trigonal pin , 2016 .

[13]  L. Fourment,et al.  Predicting recrystallized grain size in friction stir processed 304L stainless steel , 2019, Journal of Materials Science & Technology.

[14]  P. Dawson,et al.  Modeling Texture Evolution During Friction Stir Welding of Stainless Steel With Comparison to Experiments , 2008 .

[15]  Thomas H. North,et al.  Strain Rates and Grain Growth in Al 5754 and Al 6061 Friction Stir Spot Welds , 2007 .

[16]  P. Ferro,et al.  A Semianalytical Thermal Model for Fiction Stir Welding , 2010 .

[17]  M. Awang,et al.  A COMPARATIVE STUDY OF FINITE ELEMENT ANALYSIS FOR FRICTION STIR WELDING APPLICATION , 2016 .

[18]  M. Awang,et al.  Developing a Finite Element Model for Thermal Analysis of Friction Stir Welding (FSW) Using Hyperworks , 2019, Advances in Material Sciences and Engineering.

[19]  L. Fratini,et al.  Friction stir welding of steels: Process design through continuum based FEM model , 2009 .

[20]  M. Awang,et al.  Prediction of the Temperature Distribution During Friction Stir Welding (Fsw) With A Complex Curved Welding Seam: Application In The Automotive Industry , 2018 .

[21]  Carter Hamilton,et al.  A thermal model of friction stir welding in aluminum alloys , 2008 .

[22]  Chuansong Wu,et al.  Friction stir based welding and processing technologies - processes, parameters, microstructures and applications: A review , 2017 .

[23]  A. Bazoune,et al.  Coupled Eulerian Lagrangian finite element modeling of friction stir welding processes , 2013 .

[24]  K. Ushioda,et al.  Evaluation of dynamic development of grain structure during friction stir welding of pure copper using a quasi in situ method , 2019, Journal of Materials Science & Technology.

[25]  Livan Fratini,et al.  A continuum based fem model for friction stir welding—model development , 2006 .

[26]  Yucan Zhu,et al.  Thermo-mechanical Analysis of Friction Stir Welding: A Review on Recent Advances , 2019, Acta Metallurgica Sinica (English Letters).

[27]  Zhili Feng,et al.  Transient Heat and Material Flow Modeling of Friction Stir Processing of Magnesium Alloy using Threaded Tool , 2011, Metallurgical and Materials Transactions A.

[28]  R. Mishra,et al.  Friction Stir Welding and Processing: Science and Engineering , 2014 .

[29]  P. Dawson,et al.  Modeling strain hardening and texture evolution in friction stir welding of stainless steel , 2005 .

[30]  Yuh J. Chao,et al.  Numerical simulation of transient temperature and residual stresses in friction stir welding of 304L stainless steel , 2004 .

[31]  Jesper Henri Hattel,et al.  Thermal modelling of friction stir welding , 2008 .

[32]  Zhili Feng,et al.  An Alternative Frictional Boundary Condition for Computational Fluid Dynamics Simulation of Friction Stir Welding , 2016, Journal of Materials Engineering and Performance.

[33]  Z. Zhang,et al.  A fully coupled thermo-mechanical model of friction stir welding , 2008 .

[34]  M. Chiumenti,et al.  Material flow visualization in Friction Stir Welding via particle tracing , 2015 .

[35]  Øystein Grong,et al.  A process model for friction stir welding of age hardening aluminum alloys , 2001 .

[36]  Xi Jing Wang,et al.  The Temperature Field Test and Numerical Simulation of Steel’s Friction Stir Welding Process , 2013 .

[37]  Zhenyu Zhang,et al.  Finite element modeling of grain growth by point tracking method in friction stir welding of AA6082-T6 , 2017 .

[38]  B. Meyghani,et al.  A Comparison Between the Flat and the Curved Friction Stir Welding (FSW) Thermomechanical Behaviour , 2020, Archives of Computational Methods in Engineering.

[39]  E. Akinlabi,et al.  A comparison between temperature dependent and constant Young's modulus values in investigating the effect of the process parameters on thermal behaviour during friction stir welding , 2018 .

[40]  Jesper Henri Hattel,et al.  Material flow in butt friction stir welds in AA2024-T3 , 2006 .

[41]  H. Bhadeshia,et al.  Recent advances in friction-stir welding : Process, weldment structure and properties , 2008 .

[42]  Srinivasa Rao Pedapati,et al.  A Comparison of Different Finite Element Methods in the Thermal Analysis of Friction Stir Welding (FSW) , 2017 .

[43]  Christophe Desrayaud,et al.  A Thermomechanical Analysis of the Friction Stir Welding Process , 2002 .

[44]  A. Erman Tekkaya,et al.  State-of-the-art of simulation of sheet metal forming , 2000 .

[45]  M. Suéry,et al.  Mechanical behaviour at high temperature as induced during welding of a 6xxx series aluminium alloy , 2017 .

[46]  Radovan Kovacevic,et al.  Finite element modeling of friction stir welding—thermal and thermomechanical analysis , 2003 .

[47]  P. Dawson,et al.  Investigation on texture evolution during friction stir welding of stainless steel , 2006 .

[48]  Zhi Zhu,et al.  A Finite Element Model to Simulate Defect Formation during Friction Stir Welding , 2017 .

[49]  Wenya Li,et al.  Numerical modelling and experimental investigation of thermal and material flow in probeless friction stir spot welding process of Al 2198-T8 , 2018 .

[50]  V. Kannan,et al.  Friction Stir Welding of Aluminium Alloys , 2017 .

[51]  Y. Zhong,et al.  Effect of ultrasonic vibration on welding load, temperature and material flow in friction stir welding , 2017 .

[52]  Gong Zhang,et al.  Numerical analysis and analytical modeling of the spatial distribution of heat flux during friction stir welding , 2018, Journal of Manufacturing Processes.

[53]  S. Sulaiman,et al.  Optimum Speed of Friction Stir Welding on 304L Stainless Steel by Finite Element Method , 2014 .

[54]  Thomas Pardoen,et al.  Integrated modeling of friction stir welding of 6xxx series Al alloys: Process, microstructure and properties , 2012 .

[55]  Wu Jianjun,et al.  Computational fluid dynamics studies on heat generation during friction stir welding of aluminum alloy , 2013 .

[56]  S. Khurana,et al.  Tool materials selection for friction stir welding of L80 steel , 2007 .

[57]  J. T. Chen,et al.  Effect of shoulder size on the temperature rise and the material deformation in friction stir welding , 2009 .

[58]  Takashi Nakamura,et al.  Friction Stir Welding of Non-Heat-Treatable High-Strength Alloy 5083-O , 2018 .

[59]  M. Sadeghi,et al.  Thermomechanical modeling of friction stir welding in a Cu-DSS dissimilar joint , 2018 .

[60]  Andrew D. Sommers,et al.  A thermal model of friction stir welding applied to Sc-modified Al–Zn–Mg–Cu alloy extrusions , 2009 .

[61]  Paul A. Colegrove,et al.  3-Dimensional CFD modelling of flow round a threaded friction stir welding tool profile , 2005 .

[62]  C.S. Wu,et al.  Influence of tool thread pitch on material flow and thermal process in friction stir welding , 2020 .

[63]  Chuansong Wu,et al.  Thermal Analysis of Friction Stir Welding with a Complex Curved Welding Seam (TECHNICAL NOTE) , 2019, International Journal of Engineering.

[64]  Patrick Ulysse,et al.  Three-dimensional modeling of the friction stir-welding process , 2002 .

[65]  Jie Zhou,et al.  Computer simulated and experimentally verified isothermal extrusion of 7075 aluminium through continuous ram speed variation , 2004 .

[66]  Zhili Feng,et al.  Heat Flow Model for Friction Stir Welding of Aluminum Alloys , 1998 .

[67]  Christophe Desrayaud,et al.  Mechanical and thermal modelling of Friction Stir Welding , 2006 .

[68]  Takashi Nakamura,et al.  Tool Temperature and Process Modeling of Friction Stir Welding , 2018 .

[69]  F. Ozturk,et al.  Using coupled Eulerian Lagrangian formulation for accurate modeling of the friction stir welding process , 2017 .

[70]  J. T. Chen,et al.  The simulation of material behaviors in friction stir welding process by using rate-dependent constitutive model , 2008 .

[71]  Cem Celal Tutum,et al.  Thermomechanical Modelling of Friction Stir Welding , 2009 .

[72]  Feifan Wang,et al.  Numerical Simulation of Friction Welding Processes Based on ABAQUS Environment , 2012 .

[73]  M. Grujicic,et al.  Monte Carlo simulation of grain growth and welding zones in friction stir welding of AA6082-T6 , 2016, Journal of Materials Science.

[74]  Daniel Berglund Simulation of welding and stress relief heat treating in the development of aerospace components , 2001 .

[75]  Radovan Kovacevic,et al.  Numerical and experimental study of the heat transfer process in friction stir welding , 2003 .

[76]  Han Li,et al.  Effects of pin thread on the in-process material flow behavior during friction stir welding: A computational fluid dynamics study , 2018 .

[77]  Chuansong Wu,et al.  Numerical modeling for the effect of pin profiles on thermal and material flow characteristics in friction stir welding , 2015 .

[78]  Wenya Li,et al.  Formability of an AA5083 aluminum alloy T-joint using SSFSW on both corners , 2019, Materials and Manufacturing Processes.

[79]  Miguel Cervera,et al.  Numerical Simulation and Visualization of Material Flow in Friction Stir Welding via Particle Tracing , 2014 .

[80]  P. J. Bouchard,et al.  The NeT bead-on-plate benchmark for weld residual stress simulation , 2009 .

[81]  J. Ståhl,et al.  A Numerical and Experimental Investigation of the Deformation Zones and the Corresponding Cutting Forces in Orthogonal Cutting , 2011 .

[82]  Surjya K. Pal,et al.  Modeling of defects in friction stir welding using coupled Eulerian and Lagrangian method , 2018, Journal of Manufacturing Processes.

[83]  Thomas J. Lienert,et al.  Numerical modelling of 3D plastic flow and heat transfer during friction stir welding of stainless steel , 2006 .

[84]  R. Mishra,et al.  A conceptual model for the process variables related to heat generation in friction stir welding of aluminum , 2008 .

[85]  Z. Shuai,et al.  Thermo-mechanical Analysis of Friction Stir Welding: A Review on Recent Advances , 2020 .

[86]  Sung-Tae Hong,et al.  Three-dimensional numerical and experimental investigation on friction stir welding processes of ferritic stainless steel , 2013 .

[87]  Gong Zhang,et al.  Simulation of material plastic flow driven by non-uniform friction force during friction stir welding and related defect prediction , 2016 .

[88]  Gong Zhang,et al.  Computational fluid dynamics simulation of friction stir welding: A comparative study on different frictional boundary conditions , 2018 .

[89]  D R Lesuer,et al.  Modeling Large-Strain, High-Rate Deformation in Metals , 2001 .

[90]  Xinhai Qi,et al.  Thermal and Thermo-Mechanical Modeling of Friction Stir Welding of Aluminum Alloy 6061-T6 , 1998 .

[91]  Zhili Feng,et al.  Thermo-Mechanical Modeling of Friction Stir Spot Welding (FSSW) Process: Use of an Explicit Adaptive Meshing Scheme , 2005 .

[92]  M. Awang,et al.  Thermal Modelling of Friction Stir Welding (FSW) Using Calculated Young’s Modulus Values , 2019 .

[93]  Thomas J. Lienert,et al.  Three-dimensional heat and material flow during friction stir welding of mild steel , 2007 .

[94]  Z. Zhang,et al.  Comparison of two contact models in the simulation of friction stir welding process , 2008 .

[95]  Andrew Ball,et al.  A review of numerical analysis of friction stir welding , 2014 .

[96]  Guillermo Lombera,et al.  Modelado numérico del proceso de soldadura FSW incorporando una técnica de estimación de parámetros , 2014 .

[97]  G. R. Johnson,et al.  A CONSTITUTIVE MODEL AND DATA FOR METALS SUBJECTED TO LARGE STRAINS, HIGH STRAIN RATES AND HIGH TEMPERATURES , 2018 .

[98]  Rahul Jain,et al.  Finite Element Simulation of Temperature and Strain Distribution in Al2024 Aluminum Alloy by Friction Stir Welding , 2014 .

[99]  M. Awang,et al.  Developing a Finite Element Model for Thermal Analysis of Friction Stir Welding by Calculating Temperature Dependent Friction Coefficient , 2017 .

[100]  Jamil A. Khan,et al.  Prediction of temperature distribution and thermal history during friction stir welding: input torque based model , 2003 .

[101]  J. Ni,et al.  Thermal Mechanical Modeling of the Plunge Stage During Friction-Stir Welding of Dissimilar Al 6061 to TRIP 780 Steel , 2015 .

[102]  Anthony P. Reynolds,et al.  Torque, Power Requirement and Stir Zone Geometry in Friction Stir Welding Through Modeling and Experiments , 2009 .

[103]  C. Peskin,et al.  Simulation of a Flapping Flexible Filament in a Flowing Soap Film by the Immersed Boundary Method , 2002 .

[104]  Jesper Henri Hattel,et al.  An analytical model for the heat generation in friction stir welding , 2004 .

[105]  David K. Aspinwall,et al.  Modelling of hard part machining , 2002 .

[106]  Chuansong Wu,et al.  Transient model of heat transfer and material flow at different stages of friction stir welding process , 2017 .

[107]  Zhaodong Zhang,et al.  Numerical studies of tool diameter on strain rates, temperature rises and grain sizes in friction stir welding , 2015 .

[108]  Leonard E Schwer,et al.  ALUMINUM PLATE PERFORATION : A COMPARATIVE CASE STUDY USING LAGRANGE with EROSION , MULTI-MATERIAL ALE , and SMOOTH PARTICLE HYDRODYNAMICS , 2009 .

[109]  P. Colegrove,et al.  Modelling the friction stir welding of aerospace alloys , 2004 .

[110]  T. Lienert,et al.  Scaling of coupled heat transfer and plastic deformation around the pin in friction stir welding , 2010 .

[111]  Q. Shi,et al.  Finite-element analysis of the tool tilt angle effect on the formation of friction stir welds , 2017 .

[112]  P. Dawson,et al.  Modelling of strain hardening during friction stir welding of stainless steel , 2007 .

[113]  Olivier Dalverny,et al.  2D AND 3D NUMERICAL MODELS OF METAL CUTTING WITH DAMAGE EFFECTS. , 2004 .

[114]  Wei Xiao Tang,et al.  Utility of Relatively Simple Models for Understanding Process Parameter Effects on FSW , 2003 .

[115]  K. Ushioda,et al.  Experimental evaluation of strain and strain rate during rapid cooling friction stir welding of pure copper , 2018, Science and Technology of Welding and Joining.

[116]  Yuh J. Chao,et al.  Heat Transfer in Friction Stir Welding—Experimental and Numerical Studies , 2003 .

[117]  M. Rethmeier,et al.  Thermal energy generation and distribution in friction stir welding of aluminum alloys , 2014 .

[118]  Sachin Kumar Ultrasonic assisted friction stir processing of 6063 aluminum alloy , 2016 .

[119]  M. Awang,et al.  A Mathematical Formulation for Calculating Temperature Dependent Friction Coefficient Values: Application in Friction Stir Welding (FSW) , 2017 .

[120]  Hamid Zahrouni,et al.  A contribution to a critical review of friction stir welding numerical simulation , 2009 .

[121]  H. Schmidt,et al.  A local model for the thermomechanical conditions in friction stir welding , 2004 .

[122]  Mohammad Riahi,et al.  Analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 6061-T6 via numerical simulation , 2011 .

[123]  J. Ståhl,et al.  A fully coupled thermomechanical two-dimensional simulation model for orthogonal cutting: formulation and simulation , 2011 .

[124]  S. Kakooei,et al.  The Effect of Friction Coefficient in Thermal Analysis of Friction Stir Welding (FSW) , 2019, IOP Conference Series: Materials Science and Engineering.