Turbulence in the interstellar medium

Turbulence is ubiquitous in the insterstellar medium and plays a major role in several processes such as the formation of dense structures and stars, the stability of molecular clouds, the amplification of magnetic fields, and the re-acceleration and diffusion of cosmic rays. De- spite its importance, interstellar turbulence, like turbulence in general, is far from being fully understood. In this review we present the basics of turbulence physics, focusing on the statistics of its structure and energy cascade. We explore the physics of compressible and incompressible turbulent flows, as well as magnetised cases. The most relevant observational techniques that provide quantitative insights into interstel- lar turbulence are also presented. We also discuss the main difficulties in developing a three-dimensional view of inter- stellar turbulence from these observations. Finally, we briefly present what the main sources of turbulence in the interstellar medium could be.

[1]  L. Burlaga,et al.  In Situ Observations of Interstellar Plasma with Voyager 1 , 2013, Science.

[2]  L. Weinstein,et al.  The legacy. , 2004, Journal of gerontological nursing.

[3]  C. Norman,et al.  THE TURBULENT INTERSTELLAR MEDIUM: GENERALIZING TO A SCALE-DEPENDENT PHASE CONTINUUM , 1996, astro-ph/9602146.

[4]  M. Norman,et al.  The Statistics of Supersonic Isothermal Turbulence , 2007, 0704.3851.

[5]  I M Sokolov,et al.  Relative dispersion in fully developed turbulence: the Richardson's law and intermittency corrections. , 2002, Physical review letters.

[6]  A. Lazarian,et al.  Strong Imbalanced Turbulence , 2007, 0709.0554.

[7]  R. Fleck On the generation and maintenance of turbulence in the interstellar medium , 1981 .

[8]  P. Canu,et al.  Three dimensional anisotropic κ spectra of turbulence at subproton scales in the solar wind. , 2010, Physical review letters.

[9]  Carl Heiles 9286 Stars: An Agglomeration of Stellar Polarization Catalogs , 2000 .

[10]  T. Ensslin,et al.  An improved map of the Galactic Faraday sky , 2011, 1111.6186.

[11]  R. Ekers,et al.  Low-Mach-number turbulence in interstellar gas revealed by radio polarization gradients , 2011, Nature.

[12]  R. Klessen,et al.  Control of star formation by supersonic turbulence , 2000, astro-ph/0301093.

[13]  H. Imai,et al.  Microstructure of Water Masers in W3 IRS 5 , 2002 .

[14]  D. Breitschwerdt,et al.  Astronomy & Astrophysics manuscript no. (will be inserted by hand later) Global Dynamical Evolution of the ISM in Star Forming Galaxies , 2005 .

[15]  D. Falceta-Gonçalves,et al.  TURBULENCE AND THE FORMATION OF FILAMENTS, LOOPS, AND SHOCK FRONTS IN NGC 1275 , 2009, 0912.0545.

[16]  J. Pety,et al.  Statistical Properties of Line Centroid Velocities and Centroid Velocity Increments in Compressible Turbulence , 1996 .

[17]  E. Quataert,et al.  Magnetic fluctuation power near proton temperature anisotropy instability thresholds in the solar wind. , 2009, Physical review letters.

[18]  R. Kraichnan Lagrangian‐History Closure Approximation for Turbulence , 1965 .

[19]  S. Sridhar,et al.  Toward a theory of interstellar turbulence. 2. Strong Alfvenic turbulence , 1994 .

[20]  R. Kulsrud,et al.  Nonlinear growth of firehose and mirror fluctuations in astrophysical plasmas. , 2007, Physical review letters.

[21]  T. Horbury,et al.  Anisotropy in Space Plasma Turbulence: Solar Wind Observations , 2012 .

[22]  Paul R. Woodward,et al.  Kolmogorov‐like spectra in decaying three‐dimensional supersonic flows , 1994 .

[23]  R. Kraichnan Turbulent cascade and intermittency growth , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[24]  A. Lazarian,et al.  EXTENDING THE BIG POWER LAW IN THE SKY WITH TURBULENCE SPECTRA FROM WISCONSIN Hα MAPPER DATA , 2009, 0905.4413.

[25]  Javier Jiménez,et al.  Geometry and clustering of intense structures in isotropic turbulence , 2004, Journal of Fluid Mechanics.

[26]  L. Richardson,et al.  Atmospheric Diffusion Shown on a Distance-Neighbour Graph , 1926 .

[27]  C. Klingenberg,et al.  VERTICAL STRUCTURE OF A SUPERNOVA-DRIVEN TURBULENT, MAGNETIZED INTERSTELLAR MEDIUM , 2012, 1202.0552.

[28]  Tom Zimmermann,et al.  The fractal appearance of interstellar clouds , 1992 .

[29]  Daniele Carati,et al.  Energy transfers in forced MHD turbulence , 2006 .

[30]  Jr. Fleck,et al.  Scaling Relations for the Turbulent, Non--Self-gravitating, Neutral Component of the Interstellar Medium , 1996 .

[31]  A. Chian,et al.  DETECTION OF CURRENT SHEETS AND MAGNETIC RECONNECTIONS AT THE TURBULENT LEADING EDGE OF AN INTERPLANETARY CORONAL MASS EJECTION , 2011 .

[32]  P. Mininni,et al.  Nonlocal interactions in hydrodynamic turbulence at high Reynolds numbers: the slow emergence of scaling laws. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  P. S. Iroshnikov Turbulence of a conducting fluid in a strong magnetic field , 1963 .

[34]  O A Hurricane,et al.  Validation of a turbulent Kelvin-Helmholtz shear layer model using a high-energy-density OMEGA laser experiment. , 2012, Physical review letters.

[35]  G. Kowal,et al.  Turbulence in collisionless plasmas: statistical analysis from numerical simulations with pressure anisotropy , 2010, 1012.5125.

[36]  R. Dickman,et al.  Small-scale structure of the Taurus molecular clouds Turbulence in Heiles' Cloud 2 , 1987 .

[37]  Nonlinear dynamics of turbulent waves in fluids and plasmas , 2005 .

[38]  D. Falceta-Gonccalves,et al.  The mass-loss process in dwarf galaxies from 3D hydrodynamical simulations: the role of dark matter and starbursts , 2012, 1211.4068.

[39]  J. Sellwood,et al.  Differential Rotation and Turbulence in Extended H I Disks , 1998, astro-ph/9806307.

[40]  M. Wilczek Statistical and numerical investigations of fluid turbulence , 2011 .

[41]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[42]  A. Mangeney,et al.  Spectra and anisotropy of magnetic fluctuations in the Earth's magnetosheath: Cluster observations , 2008, 0810.0675.

[43]  R. Sault,et al.  The large‐scale HI structure of the Small Magellanic Cloud , 1999 .

[44]  G. Kowal,et al.  DENSITY STUDIES OF MHD INTERSTELLAR TURBULENCE: STATISTICAL MOMENTS, CORRELATIONS AND BISPECTRUM , 2008, 0811.0822.

[45]  D. York,et al.  The Far Ultraviolet Spectroscopic Explorer Survey of O VI Absorption in the Disk of the Milky Way , 2007, 0711.0005.

[46]  W. Macek,et al.  Observation of the multifractal spectrum in the heliosphere and the heliosheath by Voyager 1 and 2 , 2012 .

[47]  Enrico Fermi,et al.  Magnetic fields in spiral arms , 1953 .

[48]  N. Patel,et al.  STATISTICAL ANALYSIS OF WATER MASERS IN STAR-FORMING REGIONS: CEPHEUS A AND W75 N , 2010, 1004.2368.

[49]  M. A. D. A. D. Breitschwerdt Volume filling factors of the ISM phases in star forming galaxies. I. The role of the disk-halo interaction , 2004, astro-ph/0407034.

[50]  B. Wandelt,et al.  MAGNETIC FIELDS IN INTERSTELLAR CLOUDS FROM ZEEMAN OBSERVATIONS: INFERENCE OF TOTAL FIELD STRENGTHS BY BAYESIAN ANALYSIS , 2010 .

[51]  M. Mac Low,et al.  Turbulent Structure of a Stratified Supernova-driven Interstellar Medium , 2005, astro-ph/0601005.

[52]  G. Kowal,et al.  MAGNETIC FIELD COMPONENTS ANALYSIS OF THE SCUPOL 850 μm POLARIZATION DATA CATALOG , 2013 .

[53]  Björn Birnir,et al.  The Kolmogorov–Obukhov Statistical Theory of Turbulence , 2013, J. Nonlinear Sci..

[54]  A. Lazarian,et al.  Compressible Magnetohydrodynamic Turbulence : mode coupling , scaling relations , anisotropy , viscosity-damped regime , and astrophysical implications , 2003 .

[55]  K. Lo MEGA-MASERS AND GALAXIES , 2005 .

[56]  H. Pécseli,et al.  Coherent structures, transport and intermittency in a magnetized plasma , 2003 .

[57]  D. Falceta-Gonçalves,et al.  Local star formation triggered by supernova shocks in magnetized diffuse neutral clouds , 2008, 0812.1755.

[58]  S. Molokov,et al.  Magnetohydrodynamics : Historical evolution and trends , 2010 .

[59]  P. Koch,et al.  MAGNETIC FIELD STRENGTH MAPS FOR MOLECULAR CLOUDS: A NEW METHOD BASED ON A POLARIZATION–INTENSITY GRADIENT RELATION , 2012, 1201.4263.

[60]  A. Chian,et al.  Cluster and ACE observations of phase synchronization in intermittent magnetic field turbulence: a comparative study of shocked and unshocked solar wind , 2009 .

[61]  A. Kolmogorov A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number , 1962, Journal of Fluid Mechanics.

[62]  E. Falgarone,et al.  Intermittency of interstellar turbulence: Parsec-scale coherent structure of intense velocity-shear , 2009, 0905.0368.

[63]  Jin-lin Han Magnetic fields in our Galaxy: How much do we know? III. Progress in the last decade , 2006, astro-ph/0603512.

[64]  T. Horbury,et al.  Anisotropy of imbalanced Alfvénic turbulence in fast solar wind. , 2010, Physical review letters.

[65]  Jimmy Chi Hung Fung,et al.  Two-particle dispersion in turbulentlike flows , 1998 .

[66]  F. Fraternali,et al.  On the origin of the warm–hot absorbers in the Milky Way's halo , 2013, 1305.2964.

[67]  Coleman Krawczyk,et al.  RE-EXAMINING LARSON'S SCALING RELATIONSHIPS IN GALACTIC MOLECULAR CLOUDS , 2008, 0809.1397.

[68]  She,et al.  Universal scaling laws in fully developed turbulence. , 1994, Physical review letters.

[69]  C. Melioli,et al.  Hydrodynamical simulations of Galactic fountains: II. Evolution of multiple fountains , 2008, 0903.0720.

[70]  P. Goldreich,et al.  Imbalanced Strong MHD Turbulence , 2006, astro-ph/0607243.

[71]  C. Walker,et al.  The edges of molecular clouds: Fractal boundaries and density structure , 1991 .

[72]  A. J. Preto,et al.  Nonlinear Processes in Geophysics Intermittent Chaos Driven by Nonlinear Alfvén Waves , 2022 .

[73]  Jungyeon Cho NON-LOCALITY OF HYDRODYNAMIC AND MAGNETOHYDRODYNAMIC TURBULENCE , 2010, 1005.0878.

[74]  A. Lazarus,et al.  Solar wind proton temperature anisotropy: Linear theory and WIND/SWE observations , 2006 .

[75]  Alain Pumir,et al.  Turbulence and Stochastic Processes , 2003 .

[76]  R. Crutcher,et al.  Magnetic Fields in Dark Cloud Cores: Arecibo OH Zeeman Observations , 2008, 0802.2253.

[77]  A. Marscher,et al.  Detection of AU-Scale Structure in Molecular Clouds , 1993 .

[78]  G. Kowal,et al.  Density Fluctuations in MHD Turbulence: Spectra, Intermittency, and Topology , 2006, astro-ph/0608051.

[79]  G. Caniaux,et al.  Turbulent air‐sea fluxes in the Gulf of Guinea during the AMMA experiment , 2009 .

[80]  California Institute of Technology,et al.  Dispersion of Magnetic Fields in Molecular Clouds , 2008 .

[81]  A. Lazarian,et al.  SCALING LAWS AND DIFFUSE LOCALITY OF BALANCED AND IMBALANCED MAGNETOHYDRODYNAMIC TURBULENCE , 2010, 1002.2428.

[82]  V. Strelnitski Masers as probes of supersonic turbulence , 2007, Proceedings of the International Astronomical Union.

[83]  Hua-b. Li,et al.  Probing the Turbulence Dissipation Range and Magnetic Field Strengths in Molecular Clouds. II. Directly Probing the Ion–neutral Decoupling Scale , 2007, The Astrophysical Journal.

[84]  A. Chian,et al.  Intermittent nature of solar wind turbulence near the Earth's bow shock: phase coherence and non-Gaussianity. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[85]  A. Vincent,et al.  The spatial structure and statistical properties of homogeneous turbulence , 1991, Journal of Fluid Mechanics.

[86]  A. Lazarian,et al.  Simulations of Magnetohydrodynamic Turbulence in a Strongly Magnetized Medium , 2001, astro-ph/0105235.

[87]  Richard M. Crutcher,et al.  CN Zeeman measurements in star formation regions , 2008 .

[88]  S. Gezari,et al.  H2O Masers and Supersonic Turbulence , 2002, astro-ph/0210342.

[89]  Large-scale magnetic fields in magnetohydrodynamic turbulence. , 2013, Physical review letters.

[90]  H. K. Wong,et al.  Observational constraints on the dynamics of the interplanetary magnetic field dissipation range , 1998 .

[91]  A. Obukhov Some specific features of atmospheric turbulence , 1962 .

[92]  John W. Armstrong,et al.  Electron Density Power Spectrum in the Local Interstellar Medium , 1995 .

[93]  F. A. Borotto,et al.  Chaos in driven Alfvén systems: unstable periodic orbits and chaotic saddles , 2007 .

[94]  Robert H. Kraichnan,et al.  Inertial‐Range Spectrum of Hydromagnetic Turbulence , 1965 .

[95]  T. Passot,et al.  Influence of Cooling-Induced Compressibility on the Structure of Turbulent Flows and Gravitational Collapse , 1996, astro-ph/9607046.

[96]  G. Kowal,et al.  Studies of Regular and Random Magnetic Fields in the ISM: Statistics of Polarization Vectors and the Chandrasekhar-Fermi Technique , 2008, 0801.0279.

[97]  A. M. Oboukhov Some specific features of atmospheric tubulence , 1962, Journal of Fluid Mechanics.

[98]  CO (J = 4→3) and [C I] Observations of the Carina Molecular Cloud Complex , 2001, astro-ph/0101272.

[99]  Gopal Narayanan,et al.  Large-Scale Structure of the Molecular Gas in Taurus Revealed by High Linear Dynamic Range Spectral Line Mapping , 2008, 0802.2206.

[100]  Alyssa A. Goodman,et al.  OH Zeeman observations of dark clouds , 1993 .

[101]  William H. Matthaeus,et al.  Measurement of the rugged invariants of magnetohydrodynamic turbulence in the solar wind , 1982 .

[102]  A. Begum,et al.  Probing interstellar turbulence in spiral galaxies using H i power spectrum analysis , 2012, 1208.5386.

[103]  O. Zikanov,et al.  Transition from two-dimensional to three-dimensional magnetohydrodynamic turbulence , 2007, Journal of Fluid Mechanics.

[104]  R. Kallenbach,et al.  Evidence for Iroshnikov-Kraichnan-Type Turbulence in the Solar Wind Upstream of Interplanetary Traveling Shocks , 2008 .

[105]  C. Brunt,et al.  The Universality of Turbulence in Galactic Molecular Clouds , 2004, astro-ph/0409420.

[106]  M. Velli,et al.  Proton thermal energetics in the solar wind: Helios reloaded , 2013 .

[107]  V. Carbone,et al.  Observation of the multifractal spectrum at the termination shock by Voyager 1 , 2011 .

[108]  Antonio Pereyra,et al.  Polarimetry toward the Musca Dark Cloud. I. The Catalog , 2004 .

[109]  Enhanced core formation rate in a turbulent cloud by self-gravity , 2010, 1010.2882.

[110]  G. Eyink,et al.  Relation of Astrophysical Turbulence and Magnetic Reconnection , 2011, 1112.0022.

[111]  Tie Liu,et al.  MOLECULAR ENVIRONMENTS OF 51 PLANCK COLD CLUMPS IN THE ORION COMPLEX , 2012, 1207.0881.

[112]  Anthony Howard Minter,et al.  Observation of Turbulent Fluctuations in the Interstellar Plasma Density and Magnetic Field on Spatial Scales of 0.01 to 100 Parsecs , 1996 .

[113]  Di Li,et al.  13CO CORES IN THE TAURUS MOLECULAR CLOUD , 2012, 1206.2115.

[114]  S. Lazarian Velocity and density spectra of the small magellanic cloud , 2001, astro-ph/0102191.

[115]  A. Lazarian,et al.  Compressible sub-Alfvénic MHD turbulence in low-beta plasmas. , 2002, Physical review letters.

[116]  D. A. Green,et al.  A power spectrum analysis of the angular scale of Galactic neutral hydrogen emission towards l=140°, b=0° , 1993 .

[117]  D. O. Astronomy,et al.  Interstellar Turbulence I: Observations and Processes , 2004, astro-ph/0404451.

[118]  A. Lazarian,et al.  Tracing Magnetic Fields with Aligned Grains , 2007, 0707.0858.

[119]  V. Weizsäcker The Evolution of Galaxies and Stars. , 1951 .

[120]  U. Frisch Turbulence: The Legacy of A. N. Kolmogorov , 1996 .

[121]  Mark S. Miesch,et al.  Statistical Analysis of Turbulence in Molecular Clouds , 1994 .

[122]  James P. Evans The Origin , 2009, Genetics in Medicine.

[123]  E. Quataert,et al.  Extragalactic Zeeman Detections in OH Megamasers , 2008, 0803.1832.

[124]  F. Boulanger,et al.  High resolution 21 cm mapping of the Ursa Major Galactic cirrus: Power spectra of the high-latitude HI gas , 2003, astro-ph/0306570.

[125]  C. Brunt,et al.  Trans-Alfvénic motions in the Taurus molecular cloud , 2011, 1110.0808.

[126]  G. Eyink,et al.  Localness of energy cascade in hydrodynamic turbulence. II. Sharp spectral filter , 2009, 0909.2451.

[127]  K. Sreenivasan FRACTALS AND MULTIFRACTALS IN FLUID TURBULENCE , 1991 .

[128]  P. Woodward,et al.  Synthesized spectra of turbulent clouds , 1994 .

[129]  T. Passot,et al.  A turbulent model for the interstellar medium. I. Threshold star formation and self-gravity , 1995 .

[130]  G. Kowal,et al.  CHARACTERIZING MAGNETOHYDRODYNAMIC TURBULENCE IN THE SMALL MAGELLANIC CLOUD , 2009, 0911.3652.

[131]  A. Chepurnov,et al.  Topology of Neutral Hydrogen within the Small Magellanic Cloud , 2007, 0711.2430.

[132]  E. Bodenschatz,et al.  Experimental study of the influence of anisotropy on the inertial scales of turbulence , 2011, Journal of Fluid Mechanics.

[133]  Magnetic Fields in Shocked Regions: Very Large Array Observations of H2O Masers , 2002 .

[134]  R. J. Reynolds,et al.  ApJ, in press Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE TURBULENT WARM IONIZED MEDIUM: EMISSION MEASURE DISTRIBUTION AND MHD SIMULATIONS , 2022 .

[135]  L. Kozak,et al.  Character of turbulence in the boundary regions of the Earth’s magnetosphere , 2012, Geomagnetism and Aeronomy.

[136]  R. Walker H2O in W 49N. II. Statistical studies of hyperfine structure, clustering and velocity distributions. , 1984 .

[137]  Y. Kamide,et al.  On the chaotic nature of solar-terrestrial environment: Interplanetary Alfvén intermittency , 2006 .

[138]  Lewis F. Richardson,et al.  Weather Prediction by Numerical Process , 1922 .

[139]  T. Horbury,et al.  Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence. , 2005, Physical review letters.

[140]  Richard M. Crutcher,et al.  Magnetic Fields in Molecular Clouds: Observations Confront Theory , 1998 .

[141]  Tyler L. BourkeAlyssa A. Goodman Magnetic Fields in Molecular Clouds , 2004 .

[142]  R. Beck Galactic and extragalactic magnetic fields - a concise review , 2009 .

[143]  Konstantin Khanin,et al.  Burgers Turbulence , 2007, Energy Transfers in Fluid Flows.

[144]  J. Franco,et al.  TURBULENCE IN THE OUTSKIRTS OF THE MILKY WAY , 2007 .

[145]  M. Hayashi,et al.  High-resolution observations of turbulence in the subcondensation TMC-1C in Heiles' cloud 2 : estimation of the velocity spectrum of turbulence , 1993 .

[146]  Thermal condensation in a turbulent atomic hydrogen flow , 2005 .

[147]  Sean Oughton,et al.  Anisotropic scaling of magnetohydrodynamic turbulence. , 2008, Physical review letters.

[148]  G. Kowal,et al.  MAGNETIC FIELD AMPLIFICATION AND EVOLUTION IN TURBULENT COLLISIONLESS MAGNETOHYDRODYNAMICS: AN APPLICATION TO THE INTRACLUSTER MEDIUM , 2013, 1305.5654.

[149]  A. Chian,et al.  Universal scaling laws for fully-developed magnetic field turbulence near and far upstream of the Earth’s bow shock , 2013 .

[150]  Di Li,et al.  THE MAGNETIC FIELD IN TAURUS PROBED BY INFRARED POLARIZATION , 2011, 1108.0410.

[151]  Eckart Marsch,et al.  Turbulence in the Solar Wind , 1991 .

[152]  Probing turbulence with infrared observations in OMC1 , 2005, astro-ph/0508644.

[153]  A. Szczepaniak,et al.  Generalized two‐scale weighted Cantor set model for solar wind turbulence , 2008 .

[154]  P. Hennebelle,et al.  Turbulent molecular clouds , 2012, 1211.0637.

[155]  R. Kawabe,et al.  DEPENDENCE OF THE TURBULENT VELOCITY FIELD ON GAS DENSITY IN L1551 , 2010 .

[156]  S. Boldyrev,et al.  SPECTRUM OF KINETIC-ALFVÉN TURBULENCE , 2012, 1204.5809.

[157]  S. Bale,et al.  SOLAR WIND MAGNETOHYDRODYNAMICS TURBULENCE: ANOMALOUS SCALING AND ROLE OF INTERMITTENCY , 2009 .

[158]  G. Kowal,et al.  Scaling Relations of Compressible MHD Turbulence , 2007, 0705.2464.

[159]  M. Goldstein Major Unsolved Problems in Space Plasma Physics , 2001 .

[160]  M. Litvak Coherent Molecular Radiation , 1974 .

[161]  J. Pety,et al.  Intermittency of interstellar turbulence: extreme velocity-shears and CO emission on milliparsec scale , 2009, 0910.1766.

[162]  Andrew J. Majda,et al.  Pair dispersion over an inertial range spanning many decades , 1996 .

[163]  Kolmogorov versus Iroshnikov-Kraichnan spectra: Consequences for ion heating in the solar wind , 2007, 1106.0530.

[164]  J. Ballesteros-Paredes,et al.  Gravity or turbulence? Velocity dispersion–size relation , 2010, 1009.1583.

[165]  F. Bensch,et al.  Quantification of molecular cloud structure using the Delta -variance , 2001 .

[166]  Formation and Fragmentation of Gaseous Spurs in Spiral Galaxies , 2001, astro-ph/0111398.

[167]  C. Brunt,et al.  Turbulent Driving Scales in Molecular Clouds , 2009, 0910.0398.

[168]  P. Coleman Turbulence, viscosity, and dissipation in the solar-wind plasma , 1968 .

[169]  G. Kowal,et al.  VELOCITY FIELD OF COMPRESSIBLE MAGNETOHYDRODYNAMIC TURBULENCE: WAVELET DECOMPOSITION AND MODE SCALINGS , 2010, 1003.3697.

[170]  R. Larson Turbulence and star formation in molecular clouds , 1980 .

[171]  C. Gwinn Hypersonic acceleration and turbulence of H2O masters in W49N , 1994 .

[172]  Y. Couder,et al.  Direct observation of the intermittency of intense vorticity filaments in turbulence. , 1991, Physical review letters.

[173]  Univ. of New South Wales Southern Cross University,et al.  New OH Zeeman Measurements of Magnetic Field Strengths in Molecular Clouds , 2001, astro-ph/0102469.

[174]  A. R. Rivolo,et al.  Mass, luminosity, and line width relations of Galactic molecular clouds , 1987 .

[175]  J. M. Burgers,et al.  Mathematical Examples Illustrating Relations Occurring in the Theory of Turbulent Fluid Motion , 1995 .

[176]  P. Hennebelle,et al.  Thermal condensation in a turbulent atomic hydrogen flow , 2004 .

[177]  Nonlocal phenomenology for anisotropic magnetohydrodynamic turbulence , 2007, 0706.0816.

[178]  E. Ostriker,et al.  Magnetically Aligned Velocity Anisotropy in the Taurus Molecular Cloud , 2008, 0802.2084.

[179]  Q. Hu,et al.  Effect of current sheets on the solar wind magnetic field power spectrum from the Ulysses observation: from Kraichnan to Kolmogorov scaling. , 2011, Physical review letters.

[180]  Derivation of the relative dispersion law in the inverse energy cascade of two-dimensional turbulence , 1994 .

[181]  D. Sokoloff,et al.  Galactic Magnetism: Recent developments and perspectives , 1996 .

[182]  P. Koch,et al.  QUANTIFYING THE SIGNIFICANCE OF THE MAGNETIC FIELD FROM LARGE-SCALE CLOUD TO COLLAPSING CORE: SELF-SIMILARITY, MASS-TO-FLUX RATIO, AND STAR FORMATION EFFICIENCY , 2012, 1201.4313.

[183]  D. Falceta-Gonçalves,et al.  DAMPING OF MAGNETOHYDRODYNAMIC TURBULENCE IN PARTIALLY IONIZED GAS AND THE OBSERVED DIFFERENCE OF VELOCITIES OF NEUTRALS AND IONS , 2010, 1003.2346.