Facet-defining inequalities for the simple graph partitioning polytope

The simple graph partitioning problem is to partition an edge-weighted graph into mutually node-disjoint subgraphs, each containing at most b nodes, such that the sum of the weights of all edges in the subgraphs is maximal. In this paper we provide several classes of facet-defining inequalities for the associated simple graph partitioning polytope.

[1]  Joseph A. Lukes Efficient Algorithm for the Partitioning of Trees , 1974, IBM J. Res. Dev..

[2]  Laurence A. Wolsey,et al.  The node capacitated graph partitioning problem: A computational study , 1998, Math. Program..

[3]  Giovanni Rinaldi,et al.  A branch-and-cut algorithm for the equicut problem , 1997, Math. Program..

[4]  M. Grötschel,et al.  Composition of Facets of the Clique Partitioning Polytope , 1990 .

[5]  Michael Sørensen Polyhedral Computations for the Simple Graph Partitioning Problem , 2005 .

[6]  M. R. Rao,et al.  Facets of the K-partition Polytope , 1995, Discret. Appl. Math..

[7]  Frits C. R. Spieksma,et al.  The clique partitioning problem: Facets and patching facets , 2001, Networks.

[8]  Michael Malmros Sørensen,et al.  A Note on Clique-Web Facets for Multicut Polytopes , 2002, Math. Oper. Res..

[9]  Antonio Sassano,et al.  The equipartition polytope. I: Formulations, dimension and basic facets , 1990, Math. Program..

[10]  Frits C. R. Spieksma,et al.  Lifting theorems and facet characterization for a class of clique partitioning inequalities , 1999, Oper. Res. Lett..

[11]  Michel Deza,et al.  Facets for the cut cone II: Clique-web inequalities , 1992, Math. Program..

[12]  Antonio Sassano,et al.  The equipartition polytope. II: Valid inequalities and facets , 1990, Math. Program..

[13]  Michael Malmros Sørensen,et al.  b-Tree Facets for the Simple Graph Partitioning Polytope , 2004, J. Comb. Optim..

[14]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[15]  M. R. Rao,et al.  The partition problem , 1993, Math. Program..

[16]  E. Erkut The discrete p-dispersion problem , 1990 .

[17]  Martin Grötschel,et al.  Clique-Web Facets for Multicut Polytopes , 1992, Math. Oper. Res..

[18]  Cid C. de Souza,et al.  Some New Classes of Facets for the Equicut Polytope , 1995, Discret. Appl. Math..

[19]  Rainer Bodendiek,et al.  Topics In Combinatorics and Graph Theory , 1992 .

[20]  Michel Deza,et al.  Facets for the cut cone I , 1992, Math. Program..

[21]  Ali Ridha Mahjoub,et al.  On the cut polytope , 1986, Math. Program..

[22]  Martin Grötschel,et al.  Facets of the clique partitioning polytope , 1990, Math. Program..

[23]  Yoshiko Wakabayashi,et al.  A cutting plane algorithm for a clustering problem , 1989, Math. Program..

[24]  Michel Deza,et al.  Geometry of cuts and metrics , 2009, Algorithms and combinatorics.

[25]  Laurence A. Wolsey,et al.  Formulations and valid inequalities for the node capacitated graph partitioning problem , 1996, Math. Program..

[26]  Richard M. Karp,et al.  On linear characterizations of combinatorial optimization problems , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).