The quickest flow problem

AbstractConsider a network $$\mathcal{N}$$ =(G, c, τ) whereG=(N, A) is a directed graph andcij andτij, respectively, denote the capacity and the transmission time of arc (i, j) ∈A. The quickest flow problem is then to determine for a given valueυ the minimum numberT(υ) of time units that are necessary to transmit (send)υ units of flow in $$\mathcal{N}$$ from a given sources to a given sinks′.In this paper we show that the quickest flow problem is closely related to the maximum dynamic flow problem and to linear fractional programming problems. Based on these relationships we develop several polynomial algorithms and a strongly polynomial algorithm for the quickest flow problem.Finally we report computational results on the practical behaviour of our metholds. It turns out that some of them are practically very efficient and well-suited for solving large problem instances.

[1]  Dimitri P. Bertsekas,et al.  RELAXT-III : a new and improved version of the RELAX code , 1990 .

[2]  Günther F. Rühe Algorithmic Aspects of Flows in Networks , 1991 .

[3]  Bettina Klinz,et al.  Minimum Concave-Cost Network Flow Problems with a Single Nonlinear Arc Cost , 1993 .

[4]  Norman Zadeh,et al.  A bad network problem for the simplex method and other minimum cost flow algorithms , 1973, Math. Program..

[5]  Horst W. Hamacher ORSEP (Operations Research Software Exchange Program) , 1989 .

[6]  Patricia J. Carstensen Complexity of some parametric integer and network programming problems , 1983, Math. Program..

[7]  Giorgio Gallo,et al.  Shortest path algorithms , 1988, Handbook of Optimization in Telecommunications.

[8]  Ravindra K. Ahuja,et al.  New scaling algorithms for the assignment and minimum mean cycle problems , 1992, Math. Program..

[9]  Richard M. Karp,et al.  Parametric shortest path algorithms with an application to cyclic staffing , 1981, Discret. Appl. Math..

[10]  D. Bertsekas,et al.  The relax codes for linear minimum cost network flow problems , 1988 .

[11]  Rema Padman,et al.  Dual Algorithms for Pure Network Problems , 1989, Oper. Res..

[12]  Darwin Klingman,et al.  NETGEN: A Program for Generating Large Scale Capacitated Assignment, Transportation, and Minimum Cost Flow Network Problems , 1974 .

[13]  M. D. Grigoriadis,et al.  An efficient implementation of the network simplex method , 1986 .

[14]  Y. H. Chin,et al.  The quickest path problem , 1990, Comput. Oper. Res..

[15]  J. Ben Rosen,et al.  Algorithms for the quickest path problem and the enumeration of quickest paths , 1991, Comput. Oper. Res..

[16]  Robert E. Tarjan,et al.  Faster parametric shortest path and minimum-balance algorithms , 1991, Networks.

[17]  Edward Minieka,et al.  Maximal, Lexicographic, and Dynamic Network Flows , 1973, Oper. Res..

[18]  Ulrich Derigs,et al.  Implementing Goldberg's max-flow-algorithm — A computational investigation , 1989, ZOR Methods Model. Oper. Res..

[19]  Tomasz Radzik,et al.  Minimizing capacity violations in a transshipment network , 1992, SODA '92.

[20]  Horst W. Hamacher,et al.  Temporally repeated flow algorithms for dynamic min cost flows , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[21]  R. E. Burkard Book reviewAnalyse und anwendungen von quotientenprogrammen: Ein Beitrag zur planung mit Hilfe der nichtlinearen programmierung: Siegfried SCHAIBLE Anton Hain, Meisenheim am Glan, 1978; 259 pages DM 26,- , 1980 .

[22]  James B. Orlin A Faster Strongly Polynomial Minimum Cost Flow Algorithm , 1993, Oper. Res..

[23]  Nimrod Megiddo,et al.  Applying parallel computation algorithms in the design of serial algorithms , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[24]  Toshihide Ibaraki,et al.  Parametric approaches to fractional programs , 1983, Math. Program..

[25]  Richard L. Francis,et al.  Network models for building evacuation , 1982 .

[26]  Joachim H. Ahrens,et al.  Primal transportation and transshipment algorithms , 1980, Z. Oper. Research.

[27]  D. R. Fulkerson,et al.  Flows in Networks. , 1964 .

[28]  Wojciech Rytter,et al.  Efficient parallel algorithms , 1988 .

[29]  H. D. Ratliff,et al.  Note—Some Equivalent Objectives for Dynamic Network Flow Problems , 1982 .

[30]  Jay E. Aronson,et al.  A survey of dynamic network flows , 1989 .

[31]  Nimrod Megiddo Combinatorial Optimization with Rational Objective Functions , 1979, Math. Oper. Res..