Reconciliation of Approaches to the Semantics of Logics without Distribution

This article clarifies and indeed completes an approach (initiated by Dunn and this author several years ago and again pursued by the present author over the last three years or so) to the relational semantics of logics that may lack distribution (Dunn’s non-distributive gaggles). The approach uses sorted frames with an incidence relation on sorts (polarities), equipped with additional sorted relations, but, in the spirit of Occam’s razor principle, it drops the extra assumptions made in the generalized Kripke frames approach, initiated by Gehrke, that the frames be separated and reduced (RS-frames). We show in this article that, despite rejecting the additional frame restrictions, all the main ideas and results of the RS-frames approach relating to the semantics of non-distributive logics are captured in this simpler framework. This contributes in unifying the research field, and, in an important sense, it complements and completes Dunn’s gaggle theory project for the particular case of logics that may drop distribution.

[1]  Chrysafis Hartonas,et al.  Modal translation of substructural logics , 2018, J. Appl. Non Class. Logics.

[2]  Mai Gehrke,et al.  Bounded distributive lattice expansions , 2004 .

[3]  Ewa Orlowska,et al.  Modal Logics in the Theory of Information Systems , 1984, Math. Log. Q..

[4]  Dimiter Vakarelov,et al.  Information Systems, Similarity Relations and Modal Logics , 1998 .

[5]  Chrysafis Hartonas,et al.  Stone duality for lattice expansions , 2018, Log. J. IGPL.

[6]  M. Stone,et al.  The representation of Boolean algebras , 1938 .

[7]  M. Gehrke,et al.  Bounded Lattice Expansions , 2001 .

[8]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[9]  Lorijn van Rooijen,et al.  Generalized Kripke semantics for the Lambek-Grishin calculus , 2012, Log. J. IGPL.

[10]  Chrysafis Hartonas Discrete duality for lattices with modal operators , 2019, J. Log. Comput..

[11]  Chrysafis Hartonas,et al.  Representation of Lattices with Modal Operators in Two-Sorted Frames , 2019, Fundam. Informaticae.

[12]  Bjarni Jónsson,et al.  Relation algebras as residuated Boolean algebras , 1993 .

[13]  Robert Goldblatt,et al.  Semantic analysis of orthologic , 1974, J. Philos. Log..

[14]  Willem Conradie,et al.  Goldblatt-Thomason for LE-logics , 2018, 1809.08225.

[15]  G. Ritter,et al.  Lattice Theory , 2021, Introduction to Lattice Algebra.

[16]  Gerard Allwein,et al.  Kripke models for linear logic , 1993, Journal of Symbolic Logic.

[17]  Chrysafis Hartonas,et al.  Lattice logic as a fragment of (2-sorted) residuated modal logic , 2018, J. Appl. Non Class. Logics.

[18]  N. Wijnberg,et al.  Non-distributive logics: from semantics to meaning , 2020, 2002.04257.

[19]  Tomoyuki Suzuki,et al.  On Polarity Frames: Applications to Substructural and Lattice-based Logics , 2014, Advances in Modal Logic.

[20]  Lorijn van Rooijen,et al.  Relational semantics for full linear logic , 2014, J. Appl. Log..

[21]  A. Tarski,et al.  Boolean Algebras with Operators , 1952 .

[22]  Chrysafis Hartonas,et al.  Stone duality for lattices , 1997 .

[23]  Alessandra Palmigiano,et al.  Canonical extensions and relational completeness of some substructural logics* , 2005, Journal of Symbolic Logic.

[24]  Katalin Bimbó,et al.  Generalized Galois Logics: Relational Semantics of Nonclassical Logical Calculi , 2008 .

[25]  Willem Conradie,et al.  Algorithmic correspondence and canonicity for non-distributive logics , 2016, Ann. Pure Appl. Log..

[26]  Robert Goldblatt Morphisims and Duality for Polarities and Lattices with Operators , 2020, FLAP.

[27]  Chrysafis Hartonas,et al.  Game-theoretic semantics for non-distributive logics , 2019, Log. J. IGPL.

[28]  M. Stone Topological representations of distributive lattices and Brouwerian logics , 1938 .

[29]  Mai Gehrke,et al.  Generalized Kripke Frames , 2006, Stud Logica.

[30]  Chrysafis Hartonas Duality Results for (Co)Residuated Lattices , 2019, Logica Universalis.

[31]  J. Dunn,et al.  Duality Theorems for Partial Orders, Semilattices, Galois Connections and Lattices , 1993 .

[32]  Willem Conradie,et al.  Categories: How I Learned to Stop Worrying and Love Two Sorts , 2016, WoLLIC.

[33]  Relational Representation Theorems for Some Lattice-Based Structures , 2004 .

[34]  Chrysafis Hartonas,et al.  Duality for Lattice-Ordered Algebras and for Normal Algebraizable Logics , 1997, Stud Logica.

[35]  Gerd Hartung,et al.  A topological representation of lattices , 1992 .

[36]  Hilary A. Priestley,et al.  Representation of Distributive Lattices by means of ordered Stone Spaces , 1970 .