Computing the Set of Approximate Solutions of a Multi-objective Optimization Problem by Means of Cell Mapping Techniques

Here we address the problem of computing the set of approximate solutions of a given multi-objective optimization problem (MOP). This set is of potential interest for the decision maker since it might give him/her additional solutions to the optimal ones for the realization of the project related to the MOP. In this study, we make a first attempt to adapt well-known cell mapping techniques for the global analysis of dynamical systems to the problem at hand. Due to their global approach, these methods are well-suited for the thorough investigation of small problems, including the computation of the set of approximate solutions. We conclude this work with the presentation of three academic bi-objective optimization problems including a comparison to a related evolutionary approach.

[1]  P. Loridan ε-solutions in vector minimization problems , 1984 .

[2]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[3]  Luis G. Crespo,et al.  Stochastic Optimal Control via Bellman’s Principle , 2004 .

[4]  Jörg Fliege,et al.  Steepest descent methods for multicriteria optimization , 2000, Math. Methods Oper. Res..

[5]  Johannes Jahn,et al.  Multiobjective Search Algorithm with Subdivision Technique , 2006, Comput. Optim. Appl..

[6]  H. Fawcett Manual of Political Economy , 1995 .

[7]  Massimiliano Vasile,et al.  Computing the Set of Epsilon-Efficient Solutions in Multiobjective Space Mission Design , 2011, J. Aerosp. Comput. Inf. Commun..

[8]  C. Hsu A theory of cell-to-cell mapping dynamical systems , 1980 .

[9]  Carlos A. Coello Coello,et al.  Using the Averaged Hausdorff Distance as a Performance Measure in Evolutionary Multiobjective Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[10]  C. Hsu,et al.  Cell-To-Cell Mapping A Method of Global Analysis for Nonlinear Systems , 1987 .

[11]  Kalyanmoy Deb,et al.  Practical Approaches to Multi-Objective Optimization , 2005 .

[12]  C. Hsu A discrete method of optimal control based upon the cell state space concept , 1985 .

[13]  C. Hsu,et al.  Application of a cell-mapping method to optimal control problems , 1989 .

[14]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[15]  Marco Laumanns,et al.  Computing Gap Free Pareto Front Approximations with Stochastic Search Algorithms , 2010, Evolutionary Computation.

[16]  Kathrin Klamroth,et al.  Unbiased approximation in multicriteria optimization , 2003, Math. Methods Oper. Res..

[17]  Gabriele Eichfelder,et al.  Adaptive Scalarization Methods in Multiobjective Optimization , 2008, Vector Optimization.

[18]  Carlos A. Coello Coello,et al.  Solving Multiobjective Optimization Problems Using an Artificial Immune System , 2005, Genetic Programming and Evolvable Machines.

[19]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[20]  S. Ober-Blöbaum,et al.  A multi-objective approach to the design of low thrust space trajectories using optimal control , 2009 .

[21]  J. Craggs Applied Mathematical Sciences , 1973 .

[22]  Alexander Gelbukh,et al.  MICAI 2007: Advances in Artificial Intelligence, 6th Mexican International Conference on Artificial Intelligence, Aguascalientes, Mexico, November 4-10, 2007, Proceedings , 2007, MICAI.

[23]  Günter Rudolph,et al.  Capabilities of EMOA to Detect and Preserve Equivalent Pareto Subsets , 2007, EMO.

[24]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[25]  Oliver Schütze,et al.  On Continuation Methods for the Numerical Treatment of Multi-Objective Optimization Problems , 2005, Practical Approaches to Multi-Objective Optimization.

[26]  M. Dellnitz,et al.  A subdivision algorithm for the computation of unstable manifolds and global attractors , 1997 .

[27]  Claus Hillermeier,et al.  Nonlinear Multiobjective Optimization , 2001 .

[28]  S. Schäffler,et al.  Stochastic Method for the Solution of Unconstrained Vector Optimization Problems , 2002 .

[29]  J. Heinonen Lectures on Analysis on Metric Spaces , 2000 .

[30]  C. Hillermeier Nonlinear Multiobjective Optimization: A Generalized Homotopy Approach , 2001 .

[31]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[32]  M. Dellnitz,et al.  Covering Pareto Sets by Multilevel Subdivision Techniques , 2005 .

[33]  Jörg Fliege,et al.  Gap-free computation of Pareto-points by quadratic scalarizations , 2004, Math. Methods Oper. Res..

[34]  Massimiliano Vasile,et al.  Designing optimal low-thrust gravity-assist trajectories using space pruning and a multi-objective approach , 2009 .

[35]  Adriana Lara Lopez,et al.  Using Gradient Based Information to Build Hybrid Multi-objective Evolutionary Algorithms , 2012 .

[36]  Ulrich Rückert,et al.  Integrated circuit optimization by means of evolutionary multi-objective optimization , 2011, GECCO '11.

[37]  Carlos A. Coello Coello,et al.  Approximating the epsilon -Efficient Set of an MOP with Stochastic Search Algorithms , 2007, MICAI.

[38]  U. Ruckert,et al.  Multiobjective optimization for transistor sizing of CMOS logic standard cells using set-oriented numerical techniques , 2009, 2009 NORCHIP.

[39]  Carlos A. Coello Coello,et al.  Computing finite size representations of the set of approximate solutions of an MOP with stochastic search algorithms , 2008, GECCO '08.

[40]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.